2021-07-13T08:35:42-04:00
Find the range, the standard deviation, and the variance for the given samples. Round noninteger to the nearest tenth.
1. 48, 91, 87, 93, 59, 68, 92, 100, 81
2. 93, 67, 49, 55, 92, 87, 77, 66, 73, 96, 54
3. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4. 8, 6, 8, 6, 8, 6, 8, 6, 8, 6, 8, 6, 8
5. -8, -5, -12, -1, 4, 7, 11
6. -23, -17, -19, -5, -4, -11, -31
1
2021-07-14T10:09:41-0400
1.
48 , 59 , 68 , 81 , 87 , 91 , 92 , 93 , 100 48, 59, 68, 81,87,91, 92, 93, 100 48 , 59 , 68 , 81 , 87 , 91 , 92 , 93 , 100
R a n g e = 100 − 48 = 52 Range=100-48=52 R an g e = 100 − 48 = 52
m e a n = x ˉ = ∑ i = 1 n x i n = 1 11 ( 48 + 59 + 68 + 81 + 87 mean=\bar{x}=\dfrac{\displaystyle\sum_{i=1}^nx_i}{n}=\dfrac{1}{11}(48+59+68+81+87 m e an = x ˉ = n i = 1 ∑ n x i = 11 1 ( 48 + 59 + 68 + 81 + 87
+ 91 + 92 + 93 + 100 ) = 719 9 +91+92+93+100)=\dfrac{719}{9} + 91 + 92 + 93 + 100 ) = 9 719
≈ 79.9 \approx79.9 ≈ 79.9 V a r i a n c e = s 2 = ∑ i = 1 n ( x i − x ˉ ) 2 n − 1 Variance=s^2=\dfrac{\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2}{n-1} Va r ian ce = s 2 = n − 1 i = 1 ∑ n ( x i − x ˉ ) 2
= 1 8 ( ( 48 − 719 9 ) 2 + ( 59 − 719 9 ) 2 + ( 68 − 719 9 ) 2 =\dfrac{1}{8}((48-\dfrac{719}{9})^2+(59-\dfrac{719}{9})^2+(68-\dfrac{719}{9})^2 = 8 1 (( 48 − 9 719 ) 2 + ( 59 − 9 719 ) 2 + ( 68 − 9 719 ) 2
+ ( 81 − 719 9 ) 2 + ( 87 − 719 9 ) 2 + ( 91 − 719 9 ) 2 +(81-\dfrac{719}{9})^2+(87-\dfrac{719}{9})^2+(91-\dfrac{719}{9})^2 + ( 81 − 9 719 ) 2 + ( 87 − 9 719 ) 2 + ( 91 − 9 719 ) 2
+ ( 92 − 719 9 ) 2 + ( 93 − 719 9 ) 2 + ( 100 − 719 9 ) 2 ) +(92-\dfrac{719}{9})^2+(93-\dfrac{719}{9})^2+(100-\dfrac{719}{9})^2) + ( 92 − 9 719 ) 2 + ( 93 − 9 719 ) 2 + ( 100 − 9 719 ) 2 )
≈ 311.6 \approx311.6 ≈ 311.6
s = s 2 ≈ 17.7 s=\sqrt{s^2}\approx17.7 s = s 2 ≈ 17.7
2,
49 , 54 , 55 , 66 , 67 , 73 , 77 , 87 , 92 , 93 , 96 49,54,55,66,67,73, 77, 87, 92,93, 96 49 , 54 , 55 , 66 , 67 , 73 , 77 , 87 , 92 , 93 , 96
R a n g e = 96 − 49 = 47 Range=96-49=47 R an g e = 96 − 49 = 47 m e a n = x ˉ = ∑ i = 1 n x i n = 1 11 ( 49 + 54 + 55 + 66 + 67 mean=\bar{x}=\dfrac{\displaystyle\sum_{i=1}^nx_i}{n}=\dfrac{1}{11}(49+54+55+66+67 m e an = x ˉ = n i = 1 ∑ n x i = 11 1 ( 49 + 54 + 55 + 66 + 67
+ 73 + 77 + 87 + 92 + 93 + 96 ) = 809 11 +73+77+87+92+93+96)=\dfrac{809}{11} + 73 + 77 + 87 + 92 + 93 + 96 ) = 11 809
≈ 73.5 \approx73.5 ≈ 73.5 V a r i a n c e = s 2 = ∑ i = 1 n ( x i − x ˉ ) 2 n − 1 Variance=s^2=\dfrac{\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2}{n-1} Va r ian ce = s 2 = n − 1 i = 1 ∑ n ( x i − x ˉ ) 2
= 1 10 ( ( 49 − 809 11 ) 2 + ( 54 − 809 11 ) 2 + ( 55 − 809 11 ) 2 =\dfrac{1}{10}((49-\dfrac{809}{11})^2+(54-\dfrac{809}{11})^2+(55-\dfrac{809}{11})^2 = 10 1 (( 49 − 11 809 ) 2 + ( 54 − 11 809 ) 2 + ( 55 − 11 809 ) 2
+ ( 66 − 809 11 ) 2 + ( 67 − 809 11 ) 2 + ( 73 − 809 11 ) 2 +(66-\dfrac{809}{11})^2+(67-\dfrac{809}{11})^2+(73-\dfrac{809}{11})^2 + ( 66 − 11 809 ) 2 + ( 67 − 11 809 ) 2 + ( 73 − 11 809 ) 2
+ ( 77 − 809 11 ) 2 + ( 87 − 809 11 ) 2 + ( 92 − 809 11 ) 2 +(77-\dfrac{809}{11})^2+(87-\dfrac{809}{11})^2+(92-\dfrac{809}{11})^2 + ( 77 − 11 809 ) 2 + ( 87 − 11 809 ) 2 + ( 92 − 11 809 ) 2
+ ( 93 − 809 11 ) 2 + ( 96 − 809 11 ) 2 ) +(93-\dfrac{809}{11})^2+(96-\dfrac{809}{11})^2) + ( 93 − 11 809 ) 2 + ( 96 − 11 809 ) 2 )
≈ 284.5 \approx284.5 ≈ 284.5
s = s 2 ≈ 16.9 s=\sqrt{s^2}\approx16.9 s = s 2 ≈ 16.9
3.
4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4
R a n g e = 4 − 4 = 0 Range=4-4=0 R an g e = 4 − 4 = 0
m e a n = x ˉ = ∑ i = 1 n x i n = 1 17 ( 4 + 4 + 4 + 4 + 4 mean=\bar{x}=\dfrac{\displaystyle\sum_{i=1}^nx_i}{n}=\dfrac{1}{17}(4+4+4+4+4 m e an = x ˉ = n i = 1 ∑ n x i = 17 1 ( 4 + 4 + 4 + 4 + 4
+ 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 ) +4+4+4+4+4+4+4+4+4+4+4+4) + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 )
= 4 =4 = 4 V a r i a n c e = s 2 = ∑ i = 1 n ( x i − x ˉ ) 2 n − 1 Variance=s^2=\dfrac{\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2}{n-1} Va r ian ce = s 2 = n − 1 i = 1 ∑ n ( x i − x ˉ ) 2
= 1 16 ( ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 =\dfrac{1}{16}((4-4)^2+(4-4)^2+(4-4)^2+(4-4)^2 = 16 1 (( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2
+ ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 +(4-4)^2+(4-4)^2+(4-4)^2+(4-4)^2+(4-4)^2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2
+ ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + +(4-4)^2+(4-4)^2+(4-4)^2+(4-4)^2+ + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 +
+ ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 ) = 0 +(4-4)^2+(4-4)^2+(4-4)^2+(4-4)^2)=0 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 + ( 4 − 4 ) 2 ) = 0
s = s 2 = 0 s=\sqrt{s^2}=0 s = s 2 = 0
4.
6 , 6 , 6 , 6 , 6 , 6 , 8 , 8 , 8 , 8 , 8 , 8 , 8 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8 6 , 6 , 6 , 6 , 6 , 6 , 8 , 8 , 8 , 8 , 8 , 8 , 8
R a n g e = 8 − 6 = 2 Range=8-6=2 R an g e = 8 − 6 = 2
m e a n = x ˉ = ∑ i = 1 n x i n = 1 13 ( 6 + 6 + 6 + 6 + 6 + 6 mean=\bar{x}=\dfrac{\displaystyle\sum_{i=1}^nx_i}{n}=\dfrac{1}{13}(6+6+6+6+6+6 m e an = x ˉ = n i = 1 ∑ n x i = 13 1 ( 6 + 6 + 6 + 6 + 6 + 6
+ 8 + 8 + 8 + 8 + 8 + 8 + 8 ) = 92 13 +8+8+8+8+8+8+8)=\dfrac{92}{13} + 8 + 8 + 8 + 8 + 8 + 8 + 8 ) = 13 92
≈ 7.1 \approx7.1 ≈ 7.1 V a r i a n c e = s 2 = ∑ i = 1 n ( x i − x ˉ ) 2 n − 1 Variance=s^2=\dfrac{\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2}{n-1} Va r ian ce = s 2 = n − 1 i = 1 ∑ n ( x i − x ˉ ) 2
= 1 12 ( ( 6 − 92 13 ) 2 + ( 6 − 92 13 ) 2 + ( 6 − 92 13 ) 2 =\dfrac{1}{12}((6-\dfrac{92}{13})^2+(6-\dfrac{92}{13})^2+(6-\dfrac{92}{13})^2 = 12 1 (( 6 − 13 92 ) 2 + ( 6 − 13 92 ) 2 + ( 6 − 13 92 ) 2
+ ( 6 − 92 13 ) 2 + ( 6 − 92 13 ) 2 + ( 6 − 92 13 ) 2 +(6-\dfrac{92}{13})^2+(6-\dfrac{92}{13})^2+(6-\dfrac{92}{13})^2 + ( 6 − 13 92 ) 2 + ( 6 − 13 92 ) 2 + ( 6 − 13 92 ) 2
+ ( 8 − 92 13 ) 2 + ( 8 − 92 13 ) 2 + ( 8 − 92 13 ) 2 +(8-\dfrac{92}{13})^2+(8-\dfrac{92}{13})^2+(8-\dfrac{92}{13})^2 + ( 8 − 13 92 ) 2 + ( 8 − 13 92 ) 2 + ( 8 − 13 92 ) 2
+ ( 8 − 92 13 ) 2 + ( 8 − 92 13 ) 2 + ( 8 − 92 13 ) 2 +(8-\dfrac{92}{13})^2+(8-\dfrac{92}{13})^2+(8-\dfrac{92}{13})^2 + ( 8 − 13 92 ) 2 + ( 8 − 13 92 ) 2 + ( 8 − 13 92 ) 2
+ ( 8 − 92 13 ) 2 ) ≈ 1.1 +(8-\dfrac{92}{13})^2)\approx1.1 + ( 8 − 13 92 ) 2 ) ≈ 1.1
s = s 2 ≈ 1.0 s=\sqrt{s^2}\approx1.0 s = s 2 ≈ 1.0
5.
− 12 , − 8 , − 5 , − 1 , 4 , 7 , 11 -12,-8, -5,-1, 4, 7, 11 − 12 , − 8 , − 5 , − 1 , 4 , 7 , 11
R a n g e = 11 − ( − 12 ) = 23 Range=11-(-12)=23 R an g e = 11 − ( − 12 ) = 23 m e a n = x ˉ = ∑ i = 1 n x i n = 1 7 ( 4 − 12 − 8 − 5 − 1 + 4 mean=\bar{x}=\dfrac{\displaystyle\sum_{i=1}^nx_i}{n}=\dfrac{1}{7}(4-12-8-5-1+4 m e an = x ˉ = n i = 1 ∑ n x i = 7 1 ( 4 − 12 − 8 − 5 − 1 + 4
+ 7 + 11 ) = − 4 7 ≈ − 0.6 +7+11)=\dfrac{-4}{7}\approx-0.6 + 7 + 11 ) = 7 − 4 ≈ − 0.6
V a r i a n c e = s 2 = ∑ i = 1 n ( x i − x ˉ ) 2 n − 1 Variance=s^2=\dfrac{\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2}{n-1} Va r ian ce = s 2 = n − 1 i = 1 ∑ n ( x i − x ˉ ) 2
= 1 6 ( ( − 12 − − 4 7 ) 2 + ( − 8 − − 4 7 ) 2 + ( − 5 − − 4 7 ) 2 =\dfrac{1}{6}((-12-\dfrac{-4}{7})^2+(-8-\dfrac{-4}{7})^2+(-5-\dfrac{-4}{7})^2 = 6 1 (( − 12 − 7 − 4 ) 2 + ( − 8 − 7 − 4 ) 2 + ( − 5 − 7 − 4 ) 2
+ ( − 1 − − 4 7 ) 2 + ( 4 − − 4 7 ) 2 + ( 7 − − 4 7 ) 2 +(-1-\dfrac{-4}{7})^2+(4-\dfrac{-4}{7})^2+(7-\dfrac{-4}{7})^2 + ( − 1 − 7 − 4 ) 2 + ( 4 − 7 − 4 ) 2 + ( 7 − 7 − 4 ) 2
+ ( 11 − − 4 7 ) 2 ) ≈ 69.6 +(11-\dfrac{-4}{7})^2)\approx69.6 + ( 11 − 7 − 4 ) 2 ) ≈ 69.6
s = s 2 ≈ 8.3 s=\sqrt{s^2}\approx8.3 s = s 2 ≈ 8.3
6.
− 31 , − 23 , − 19 , − 17 , − 11 , − 5 , − 4 -31,-23, -19, -17, -11,-5, -4 − 31 , − 23 , − 19 , − 17 , − 11 , − 5 , − 4
R a n g e = − 4 − ( − 31 ) = 27 Range=-4-(-31)=27 R an g e = − 4 − ( − 31 ) = 27 m e a n = x ˉ = ∑ i = 1 n x i n = 1 7 ( − 31 − 23 − 19 − 17 mean=\bar{x}=\dfrac{\displaystyle\sum_{i=1}^nx_i}{n}=\dfrac{1}{7}(-31-23-19-17 m e an = x ˉ = n i = 1 ∑ n x i = 7 1 ( − 31 − 23 − 19 − 17
− 11 − 5 − 4 ) = − 110 7 ≈ − 15.7 -11-5-4)=\dfrac{-110}{7}\approx-15.7 − 11 − 5 − 4 ) = 7 − 110 ≈ − 15.7
V a r i a n c e = s 2 = ∑ i = 1 n ( x i − x ˉ ) 2 n − 1 Variance=s^2=\dfrac{\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2}{n-1} Va r ian ce = s 2 = n − 1 i = 1 ∑ n ( x i − x ˉ ) 2
= 1 6 ( ( − 31 − − 110 7 ) 2 + ( − 23 − − 110 7 ) 2 =\dfrac{1}{6}((-31-\dfrac{-110}{7})^2+(-23-\dfrac{-110}{7})^2 = 6 1 (( − 31 − 7 − 110 ) 2 + ( − 23 − 7 − 110 ) 2
( − 19 − − 110 7 ) 2 + ( − 17 − − 110 7 ) 2 (-19-\dfrac{-110}{7})^2+(-17-\dfrac{-110}{7})^2 ( − 19 − 7 − 110 ) 2 + ( − 17 − 7 − 110 ) 2
( − 11 − − 110 7 ) 2 + ( − 5 − − 110 7 ) 2 (-11-\dfrac{-110}{7})^2+(-5-\dfrac{-110}{7})^2 ( − 11 − 7 − 110 ) 2 + ( − 5 − 7 − 110 ) 2
+ ( − 4 − − 110 7 ) 2 ≈ 95.6 +(-4-\dfrac{-110}{7})^2\approx95.6 + ( − 4 − 7 − 110 ) 2 ≈ 95.6
s = s 2 ≈ 9.8 s=\sqrt{s^2}\approx9.8 s = s 2 ≈ 9.8
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments