Answer to Question #216849 in Statistics and Probability for Yalou

Question #216849
Find the range, the standard deviation, and the variance for the given samples. Round noninteger to the nearest tenth.

1. 48, 91, 87, 93, 59, 68, 92, 100, 81
2. 93, 67, 49, 55, 92, 87, 77, 66, 73, 96, 54
3. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4. 8, 6, 8, 6, 8, 6, 8, 6, 8, 6, 8, 6, 8
5. -8, -5, -12, -1, 4, 7, 11
6. -23, -17, -19, -5, -4, -11, -31
1
Expert's answer
2021-07-14T10:09:41-0400

1.


"48, 59, 68, 81,87,91, 92, 93, 100"




"Range=100-48=52"


"mean=\\bar{x}=\\dfrac{\\displaystyle\\sum_{i=1}^nx_i}{n}=\\dfrac{1}{11}(48+59+68+81+87"

"+91+92+93+100)=\\dfrac{719}{9}"

"\\approx79.9""Variance=s^2=\\dfrac{\\displaystyle\\sum_{i=1}^n(x_i-\\bar{x})^2}{n-1}"

"=\\dfrac{1}{8}((48-\\dfrac{719}{9})^2+(59-\\dfrac{719}{9})^2+(68-\\dfrac{719}{9})^2"

"+(81-\\dfrac{719}{9})^2+(87-\\dfrac{719}{9})^2+(91-\\dfrac{719}{9})^2"

"+(92-\\dfrac{719}{9})^2+(93-\\dfrac{719}{9})^2+(100-\\dfrac{719}{9})^2)"

"\\approx311.6"

"s=\\sqrt{s^2}\\approx17.7"


2,


"49,54,55,66,67,73, 77, 87, 92,93, 96"




"Range=96-49=47""mean=\\bar{x}=\\dfrac{\\displaystyle\\sum_{i=1}^nx_i}{n}=\\dfrac{1}{11}(49+54+55+66+67"

"+73+77+87+92+93+96)=\\dfrac{809}{11}"

"\\approx73.5""Variance=s^2=\\dfrac{\\displaystyle\\sum_{i=1}^n(x_i-\\bar{x})^2}{n-1}"

"=\\dfrac{1}{10}((49-\\dfrac{809}{11})^2+(54-\\dfrac{809}{11})^2+(55-\\dfrac{809}{11})^2"

"+(66-\\dfrac{809}{11})^2+(67-\\dfrac{809}{11})^2+(73-\\dfrac{809}{11})^2"

"+(77-\\dfrac{809}{11})^2+(87-\\dfrac{809}{11})^2+(92-\\dfrac{809}{11})^2"

"+(93-\\dfrac{809}{11})^2+(96-\\dfrac{809}{11})^2)"

"\\approx284.5"

"s=\\sqrt{s^2}\\approx16.9"


3.



"4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4"




"Range=4-4=0"


"mean=\\bar{x}=\\dfrac{\\displaystyle\\sum_{i=1}^nx_i}{n}=\\dfrac{1}{17}(4+4+4+4+4"

"+4+4+4+4+4+4+4+4+4+4+4+4)"

"=4""Variance=s^2=\\dfrac{\\displaystyle\\sum_{i=1}^n(x_i-\\bar{x})^2}{n-1}"

"=\\dfrac{1}{16}((4-4)^2+(4-4)^2+(4-4)^2+(4-4)^2"

"+(4-4)^2+(4-4)^2+(4-4)^2+(4-4)^2+(4-4)^2"

"+(4-4)^2+(4-4)^2+(4-4)^2+(4-4)^2+"

"+(4-4)^2+(4-4)^2+(4-4)^2+(4-4)^2)=0"

"s=\\sqrt{s^2}=0"

4.


"6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8"




"Range=8-6=2"


"mean=\\bar{x}=\\dfrac{\\displaystyle\\sum_{i=1}^nx_i}{n}=\\dfrac{1}{13}(6+6+6+6+6+6"

"+8+8+8+8+8+8+8)=\\dfrac{92}{13}"

"\\approx7.1""Variance=s^2=\\dfrac{\\displaystyle\\sum_{i=1}^n(x_i-\\bar{x})^2}{n-1}"

"=\\dfrac{1}{12}((6-\\dfrac{92}{13})^2+(6-\\dfrac{92}{13})^2+(6-\\dfrac{92}{13})^2"

"+(6-\\dfrac{92}{13})^2+(6-\\dfrac{92}{13})^2+(6-\\dfrac{92}{13})^2"

"+(8-\\dfrac{92}{13})^2+(8-\\dfrac{92}{13})^2+(8-\\dfrac{92}{13})^2"

"+(8-\\dfrac{92}{13})^2+(8-\\dfrac{92}{13})^2+(8-\\dfrac{92}{13})^2"

"+(8-\\dfrac{92}{13})^2)\\approx1.1"

"s=\\sqrt{s^2}\\approx1.0"

5.


"-12,-8, -5,-1, 4, 7, 11"




"Range=11-(-12)=23""mean=\\bar{x}=\\dfrac{\\displaystyle\\sum_{i=1}^nx_i}{n}=\\dfrac{1}{7}(4-12-8-5-1+4"

"+7+11)=\\dfrac{-4}{7}\\approx-0.6"

"Variance=s^2=\\dfrac{\\displaystyle\\sum_{i=1}^n(x_i-\\bar{x})^2}{n-1}"

"=\\dfrac{1}{6}((-12-\\dfrac{-4}{7})^2+(-8-\\dfrac{-4}{7})^2+(-5-\\dfrac{-4}{7})^2"

"+(-1-\\dfrac{-4}{7})^2+(4-\\dfrac{-4}{7})^2+(7-\\dfrac{-4}{7})^2"

"+(11-\\dfrac{-4}{7})^2)\\approx69.6"

"s=\\sqrt{s^2}\\approx8.3"



6.


"-31,-23, -19, -17, -11,-5, -4"




"Range=-4-(-31)=27""mean=\\bar{x}=\\dfrac{\\displaystyle\\sum_{i=1}^nx_i}{n}=\\dfrac{1}{7}(-31-23-19-17"

"-11-5-4)=\\dfrac{-110}{7}\\approx-15.7"

"Variance=s^2=\\dfrac{\\displaystyle\\sum_{i=1}^n(x_i-\\bar{x})^2}{n-1}"

"=\\dfrac{1}{6}((-31-\\dfrac{-110}{7})^2+(-23-\\dfrac{-110}{7})^2"

"(-19-\\dfrac{-110}{7})^2+(-17-\\dfrac{-110}{7})^2"

"(-11-\\dfrac{-110}{7})^2+(-5-\\dfrac{-110}{7})^2"

"+(-4-\\dfrac{-110}{7})^2\\approx95.6"

"s=\\sqrt{s^2}\\approx9.8"




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS