Question #216849
Find the range, the standard deviation, and the variance for the given samples. Round noninteger to the nearest tenth.

1. 48, 91, 87, 93, 59, 68, 92, 100, 81
2. 93, 67, 49, 55, 92, 87, 77, 66, 73, 96, 54
3. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4. 8, 6, 8, 6, 8, 6, 8, 6, 8, 6, 8, 6, 8
5. -8, -5, -12, -1, 4, 7, 11
6. -23, -17, -19, -5, -4, -11, -31
1
Expert's answer
2021-07-14T10:09:41-0400

1.


48,59,68,81,87,91,92,93,10048, 59, 68, 81,87,91, 92, 93, 100




Range=10048=52Range=100-48=52


mean=xˉ=i=1nxin=111(48+59+68+81+87mean=\bar{x}=\dfrac{\displaystyle\sum_{i=1}^nx_i}{n}=\dfrac{1}{11}(48+59+68+81+87

+91+92+93+100)=7199+91+92+93+100)=\dfrac{719}{9}

79.9\approx79.9Variance=s2=i=1n(xixˉ)2n1Variance=s^2=\dfrac{\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2}{n-1}

=18((487199)2+(597199)2+(687199)2=\dfrac{1}{8}((48-\dfrac{719}{9})^2+(59-\dfrac{719}{9})^2+(68-\dfrac{719}{9})^2

+(817199)2+(877199)2+(917199)2+(81-\dfrac{719}{9})^2+(87-\dfrac{719}{9})^2+(91-\dfrac{719}{9})^2

+(927199)2+(937199)2+(1007199)2)+(92-\dfrac{719}{9})^2+(93-\dfrac{719}{9})^2+(100-\dfrac{719}{9})^2)

311.6\approx311.6

s=s217.7s=\sqrt{s^2}\approx17.7


2,


49,54,55,66,67,73,77,87,92,93,9649,54,55,66,67,73, 77, 87, 92,93, 96




Range=9649=47Range=96-49=47mean=xˉ=i=1nxin=111(49+54+55+66+67mean=\bar{x}=\dfrac{\displaystyle\sum_{i=1}^nx_i}{n}=\dfrac{1}{11}(49+54+55+66+67

+73+77+87+92+93+96)=80911+73+77+87+92+93+96)=\dfrac{809}{11}

73.5\approx73.5Variance=s2=i=1n(xixˉ)2n1Variance=s^2=\dfrac{\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2}{n-1}

=110((4980911)2+(5480911)2+(5580911)2=\dfrac{1}{10}((49-\dfrac{809}{11})^2+(54-\dfrac{809}{11})^2+(55-\dfrac{809}{11})^2

+(6680911)2+(6780911)2+(7380911)2+(66-\dfrac{809}{11})^2+(67-\dfrac{809}{11})^2+(73-\dfrac{809}{11})^2

+(7780911)2+(8780911)2+(9280911)2+(77-\dfrac{809}{11})^2+(87-\dfrac{809}{11})^2+(92-\dfrac{809}{11})^2

+(9380911)2+(9680911)2)+(93-\dfrac{809}{11})^2+(96-\dfrac{809}{11})^2)

284.5\approx284.5

s=s216.9s=\sqrt{s^2}\approx16.9


3.



4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,44, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4




Range=44=0Range=4-4=0


mean=xˉ=i=1nxin=117(4+4+4+4+4mean=\bar{x}=\dfrac{\displaystyle\sum_{i=1}^nx_i}{n}=\dfrac{1}{17}(4+4+4+4+4

+4+4+4+4+4+4+4+4+4+4+4+4)+4+4+4+4+4+4+4+4+4+4+4+4)

=4=4Variance=s2=i=1n(xixˉ)2n1Variance=s^2=\dfrac{\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2}{n-1}

=116((44)2+(44)2+(44)2+(44)2=\dfrac{1}{16}((4-4)^2+(4-4)^2+(4-4)^2+(4-4)^2

+(44)2+(44)2+(44)2+(44)2+(44)2+(4-4)^2+(4-4)^2+(4-4)^2+(4-4)^2+(4-4)^2

+(44)2+(44)2+(44)2+(44)2++(4-4)^2+(4-4)^2+(4-4)^2+(4-4)^2+

+(44)2+(44)2+(44)2+(44)2)=0+(4-4)^2+(4-4)^2+(4-4)^2+(4-4)^2)=0

s=s2=0s=\sqrt{s^2}=0

4.


6,6,6,6,6,6,8,8,8,8,8,8,86, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8




Range=86=2Range=8-6=2


mean=xˉ=i=1nxin=113(6+6+6+6+6+6mean=\bar{x}=\dfrac{\displaystyle\sum_{i=1}^nx_i}{n}=\dfrac{1}{13}(6+6+6+6+6+6

+8+8+8+8+8+8+8)=9213+8+8+8+8+8+8+8)=\dfrac{92}{13}

7.1\approx7.1Variance=s2=i=1n(xixˉ)2n1Variance=s^2=\dfrac{\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2}{n-1}

=112((69213)2+(69213)2+(69213)2=\dfrac{1}{12}((6-\dfrac{92}{13})^2+(6-\dfrac{92}{13})^2+(6-\dfrac{92}{13})^2

+(69213)2+(69213)2+(69213)2+(6-\dfrac{92}{13})^2+(6-\dfrac{92}{13})^2+(6-\dfrac{92}{13})^2

+(89213)2+(89213)2+(89213)2+(8-\dfrac{92}{13})^2+(8-\dfrac{92}{13})^2+(8-\dfrac{92}{13})^2

+(89213)2+(89213)2+(89213)2+(8-\dfrac{92}{13})^2+(8-\dfrac{92}{13})^2+(8-\dfrac{92}{13})^2

+(89213)2)1.1+(8-\dfrac{92}{13})^2)\approx1.1

s=s21.0s=\sqrt{s^2}\approx1.0

5.


12,8,5,1,4,7,11-12,-8, -5,-1, 4, 7, 11




Range=11(12)=23Range=11-(-12)=23mean=xˉ=i=1nxin=17(412851+4mean=\bar{x}=\dfrac{\displaystyle\sum_{i=1}^nx_i}{n}=\dfrac{1}{7}(4-12-8-5-1+4

+7+11)=470.6+7+11)=\dfrac{-4}{7}\approx-0.6

Variance=s2=i=1n(xixˉ)2n1Variance=s^2=\dfrac{\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2}{n-1}

=16((1247)2+(847)2+(547)2=\dfrac{1}{6}((-12-\dfrac{-4}{7})^2+(-8-\dfrac{-4}{7})^2+(-5-\dfrac{-4}{7})^2

+(147)2+(447)2+(747)2+(-1-\dfrac{-4}{7})^2+(4-\dfrac{-4}{7})^2+(7-\dfrac{-4}{7})^2

+(1147)2)69.6+(11-\dfrac{-4}{7})^2)\approx69.6

s=s28.3s=\sqrt{s^2}\approx8.3



6.


31,23,19,17,11,5,4-31,-23, -19, -17, -11,-5, -4




Range=4(31)=27Range=-4-(-31)=27mean=xˉ=i=1nxin=17(31231917mean=\bar{x}=\dfrac{\displaystyle\sum_{i=1}^nx_i}{n}=\dfrac{1}{7}(-31-23-19-17

1154)=110715.7-11-5-4)=\dfrac{-110}{7}\approx-15.7

Variance=s2=i=1n(xixˉ)2n1Variance=s^2=\dfrac{\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2}{n-1}

=16((311107)2+(231107)2=\dfrac{1}{6}((-31-\dfrac{-110}{7})^2+(-23-\dfrac{-110}{7})^2

(191107)2+(171107)2(-19-\dfrac{-110}{7})^2+(-17-\dfrac{-110}{7})^2

(111107)2+(51107)2(-11-\dfrac{-110}{7})^2+(-5-\dfrac{-110}{7})^2

+(41107)295.6+(-4-\dfrac{-110}{7})^2\approx95.6

s=s29.8s=\sqrt{s^2}\approx9.8




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS