a)
P(−z<Z<z)=0.9030P(Z<z)−(1−P(Z<z))=0.90302P(Z<z)−1=0.90302P(Z<z)=1+0.90302P(Z<z)=1.9030P(Z<z)=21.9030P(Z<z)=0.9515
See the probability 0.9515 in the standard normal table the corresponding z value 1.66
P(Z<1.66)=0.9515z=1.66
b)
P(−z<Z<z)=0.9528P(Z<z)−(1−P(Z<z))=0.95282P(Z<z)−1=0.95282P(Z<z)=1+0.95282P(Z<z)=1.9528P(Z<z)=21.9528P(Z<z)=0.9764
See the probability 0.9764 in the standard normal table the corresponding z value 1.98
P(Z<1.98)=0.9764z=1.98
Comments