Question #216526

Given that Z is a standard normal random variable, find Z for each

situation.

a) The area between -Z and Z is .9030.

b) The area between -Z and Z is .9528.


1
Expert's answer
2021-07-14T13:01:22-0400

a)

P(z<Z<z)=0.9030P(Z<z)(1P(Z<z))=0.90302P(Z<z)1=0.90302P(Z<z)=1+0.90302P(Z<z)=1.9030P(Z<z)=1.90302P(Z<z)=0.9515P(-z < Z < z) = 0.9030 \\ P(Z < z) - (1-P(Z < z)) = 0.9030 \\ 2P(Z < z) - 1 = 0.9030 \\ 2P(Z < z) = 1 + 0.9030 \\ 2P(Z < z) = 1.9030 \\ P(Z < z) = \frac{1.9030 }{ 2 } \\ P(Z < z) = 0.9515

See the probability 0.9515 in the standard normal table the corresponding z value 1.66

P(Z<1.66)=0.9515z=1.66P(Z < 1.66) = 0.9515 \\ z = 1.66

b)

P(z<Z<z)=0.9528P(Z<z)(1P(Z<z))=0.95282P(Z<z)1=0.95282P(Z<z)=1+0.95282P(Z<z)=1.9528P(Z<z)=1.95282P(Z<z)=0.9764P(-z < Z < z) = 0.9528 \\ P(Z < z) - (1-P(Z < z)) = 0.9528 \\ 2P(Z < z) - 1 = 0.9528 \\ 2P(Z < z) = 1 + 0.9528 \\ 2P(Z < z) = 1.9528 \\ P(Z < z) = \frac{1.9528 }{ 2 } \\ P(Z < z) = 0.9764

See the probability 0.9764 in the standard normal table the corresponding z value 1.98

P(Z<1.98)=0.9764z=1.98P(Z< 1.98) = 0.9764 \\ z= 1.98


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS