We'll find Karl Pearson's mode coefficient of skewness.
From the table one can see that the maximal frequency corresponds to the 4-th interval with midpoint 147. Therefore, mode M(X)=147.
Calculate the expectation of the random variable:
"E(X)=(132\\cdot 3 +137\\cdot 12 +142\\cdot 21 +147\\cdot 28 +152\\cdot 19 +157\\cdot 12 +162\\cdot 5)\/100=147.2"
Calculate the variance of the random variable:
"V(X)=(132-147.2)^2\\cdot 3 +(137-147.2)^2\\cdot 12 +(142-147.2)^2\\cdot 21 +(147-147.2)^2\\cdot 28 +(152-147.2)^2\\cdot 19 +(157-147.2)^2\\cdot 12 +(162-147.2)^2\\cdot 5)\/100=51.96"
Calculate the standard deviation:
"\\sigma=\\sqrt{V(X)}=\\sqrt{51.96}=7.21"
Karl Pearson's mode coefficient of skewness:
"\\frac{E(X)-M(X)}{\\sigma} = \\frac{147.2-147}{7.21}=2.77"
Comments
Leave a comment