Q.3 : Let X, Y be two random numbers with joint distribution function
f(x,y) = Kx fory≤x≤y+1,0≤y≤2,
= 0 otherwise.
(a) Compute K.
(b) Compute the m.d.f. and the expectation of X.
1= "\\intop" +ϖ "\\intop" -ϖ +ϖ f(x,y)dxdy ="\\int" 02("\\int" yy+1kxdx)dy= k/2"\\intop" 02 ((y+1)2 -y)dy= k"\\intop" 02 (y+ 0.5)dy
k/2(y+0.5)2 from 0 to 2
= k/2 (2.52 -0.52) =3k
Therefore k =1/3
Mean
E(x) ="\\iint" xf(x,y)dxdy =1/9"\\intop"02((y+1)3-y3)dy = 1/36(y+1)4 -y4) from 0 to 2
= (34 -24 -14 +0)/36
=16/9
The probability density function of x is fx(x) ="\\intop" f(x,y)dy.
If x ∈/ (0,3)
fx(x)= 0 otherwise
fx(x) = "\\intop" (0, x-1)(x,2) x/3.
Comments
Leave a comment