f(x,y,z)=kexp[−(2x2−2xy+y2+z2+2x−6y)/2]
f(x,y,z)=kexp[−((x−2)2−(y−x−3)2+z2−13)/2]
f(x,y,z)=kexp[−(2(x−(y−1)/2)2+(y−5)2/2+z2−13)/2]
(1) 1=−∞∫+∞−∞∫+∞−∞∫+∞f(x,y,z)dxdydz
=−∞∫+∞−∞∫+∞−∞∫+∞kexp[−((x−2)2−(y−x−3)2+z2−13)/2]dxdydz
=ke−13/2−∞∫+∞exp(−z2/2)dz−∞∫+∞exp(−(x−2)2/2)(−∞∫+∞exp(−(y−x−3)2/2)dy)dx
=k(2π)3/2e−13/2
Therefore, k=(2π)−3/2e13/2.
(2) E(X)=−∞∫+∞−∞∫+∞−∞∫+∞xf(x,y,z)dxdydz=
=ke−13/2−∞∫+∞exp(−z2/2)dz−∞∫+∞xexp(−(x−2)2/2)(−∞∫+∞exp(−(y−x−3)2/2)dy)dx=
=2π1−∞∫+∞xexp(−(x−2)2/2)dx=2
E(Y)=−∞∫+∞−∞∫+∞−∞∫+∞yf(x,y,z)dxdydz=
=ke−13/2−∞∫+∞exp(−z2/2)dz−∞∫+∞exp(−(x−2)2/2)(−∞∫+∞yexp(−(y−x−3)2/2)dy)dx=
=2π1−∞∫+∞(x+3)exp(−(x−2)2/2)dx=5
E(Z)=−∞∫+∞−∞∫+∞−∞∫+∞zf(x,y,z)dxdydz=
=ke−13/2−∞∫+∞zexp(−z2/2)dz−∞∫+∞exp(−(x−2)2/2)(−∞∫+∞exp(−(y−x−3)2/2)dy)dx=
=0
(3)
fX,Z(x,z)=−∞∫+∞f(x,y,z)dy=−∞∫+∞kexp[−((x−2)2−(y−x−3)2+z2−13)/2]dy=
=2πx+3exp[−((x−2)2+z2)/2]
V(X)=−∞∫+∞−∞∫+∞−∞∫+∞(x−2)2f(x,y,z)dxdydz=
=ke−13/2−∞∫+∞e−z2/2dz−∞∫+∞(x−2)2e−(x−2)2/2(−∞∫+∞e−(y−x−3)2/2dy)dx=1
V(Y)=−∞∫+∞−∞∫+∞−∞∫+∞(y−5)2f(x,y,z)dxdydz=
=ke−13/2−∞∫+∞e−z2/2dz−∞∫+∞e−(x−2)2/2(−∞∫+∞(y−5)2e−(y−x−3)2/2dy)dx=
=2π1−∞∫+∞e−(x−2)2/2(−∞∫+∞(y+x−2)2e−y2/2dy)dx=
=2π1−∞∫+∞(1+(x−2)2)e−(x−2)2/2dx=
=2π1−∞∫+∞(1+x2)e−x2/2dx=2
(4) Cov(X,Z)=−∞∫+∞−∞∫+∞−∞∫+∞z(x−2)f(x,y,z)dxdydz=
=ke−13/2−∞∫+∞ze−z2/2dz−∞∫+∞(x−2)e−(x−2)2/2(−∞∫+∞e−(y−x−3)2/2dy)dx=0
Therefore, Corr(X,Z)=Cov(X,Z)/(σXσZ)=0
Cov(X,Y)=−∞∫+∞−∞∫+∞−∞∫+∞(x−2)(y−5)f(x,y,z)dxdydz=
=ke−13/2−∞∫+∞e−z2/2dz−∞∫+∞(x−2)e−(x−2)2/2(−∞∫+∞(y−5)e−(y−x−3)2/2dy)dx=
=2π1−∞∫+∞(x−2)e−(x−2)2/2(−∞∫+∞(y+x−2)e−y2/2dy)dx=
=2π1−∞∫+∞(x−2)2e−(x−2)2/2dx=1
σX=V(X)=1
σY=V(Y)=2
Cov(X,Y)=Corr(X,Y)/(σXσY)=1/(1⋅2)=2/2
5.W=X+Z
P(W<w)=−∞∫+∞−∞∫+∞−∞∫+∞Ix+z<w(x,y,z)f(x,y,z)dxdydz=
=ke−13/2−∞∫+∞e−z2/2−∞∫w−ze−(x−2)2/2−∞∫+∞e−(y−x−3)2/2dydxdz=
=2π1−∞∫+∞e−z2/2−∞∫w−ze−(x−2)2/2dxdz
fW(w)=dwdP(W<w)=2π1dwd−∞∫+∞e−z2/2−∞∫w−ze−(x−2)2/2dxdz=
=2π1−∞∫+∞e−z2/2e−(w−z−2)2/2dz=
=2π1−∞∫+∞e−(2z2−2zw+w2+4z−4w+4)/2dz=
=2π1−∞∫+∞e−(z−w/2+1)2e−(w−2)2/4dz=
=2π1e−(w−2)2/4−∞∫+∞e−z2dz=2π1e−(w−2)2/4
Comments