Question #215042
Q.4 A random vector (X, Y, Z) has joint density given by

. f (x, y,z) = k exp [− 1/2 (2x2 − 2xy + y2 + z2 + 2x − 6y) .



1. Compute k.

2. Compute the expectations P(X), P(Y ) and P(Z).

3. Compute the density of the random vector (X, Z).

4. Compute the correlation coeffificient between X and Z and between X and Y .

5. Let W = X + Z; compute the probability density of W.
1
Expert's answer
2021-07-16T09:16:04-0400

f(x,y,z)=kexp[(2x22xy+y2+z2+2x6y)/2]f (x, y, z) = k \exp [− (2x^2 − 2xy + y^2 + z^2 + 2x − 6y)/2]


f(x,y,z)=kexp[((x2)2(yx3)2+z213)/2]f (x, y, z) = k \exp [− ((x-2)^2 − (y-x-3)^2 + z^2 -13)/2]


f(x,y,z)=kexp[(2(x(y1)/2)2+(y5)2/2+z213)/2]f (x, y, z) = k \exp [− (2(x-(y-1)/2)^2 + (y-5)^2/2 + z^2 -13)/2]


(1) 1=+++f(x,y,z)dxdydz1=\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}f(x,y,z)dxdydz


=+++kexp[((x2)2(yx3)2+z213)/2]dxdydz=\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}k \exp [− ((x-2)^2 − (y-x-3)^2 + z^2 -13)/2]dxdydz


=ke13/2+exp(z2/2)dz+exp((x2)2/2)(+exp((yx3)2/2)dy)dx=ke^{-13/2}\int\limits_{-\infty}^{+\infty}\exp(- z^2/2)dz\int\limits_{-\infty}^{+\infty}\exp (− (x-2)^2/2)\left(\int\limits_{-\infty}^{+\infty}\exp(−(y-x-3)^2 /2)dy\right)dx

=k(2π)3/2e13/2=k(2\pi)^{3/2}e^{-13/2}

Therefore, k=(2π)3/2e13/2k=(2\pi)^{-3/2}e^{13/2}.


(2) E(X)=+++xf(x,y,z)dxdydz=E(X)=\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}xf(x,y,z)dxdydz=

=ke13/2+exp(z2/2)dz+xexp((x2)2/2)(+exp((yx3)2/2)dy)dx==ke^{-13/2}\int\limits_{-\infty}^{+\infty}\exp(- z^2/2)dz\int\limits_{-\infty}^{+\infty}x\exp (− (x-2)^2/2)\left(\int\limits_{-\infty}^{+\infty}\exp(−(y-x-3)^2 /2)dy\right)dx=

=12π+xexp((x2)2/2)dx=2=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{+\infty}x\exp (− (x-2)^2/2)dx=2


E(Y)=+++yf(x,y,z)dxdydz=E(Y)=\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}yf(x,y,z)dxdydz=

=ke13/2+exp(z2/2)dz+exp((x2)2/2)(+yexp((yx3)2/2)dy)dx==ke^{-13/2}\int\limits_{-\infty}^{+\infty}\exp(- z^2/2)dz\int\limits_{-\infty}^{+\infty}\exp (− (x-2)^2/2)\left(\int\limits_{-\infty}^{+\infty}y\exp(−(y-x-3)^2 /2)dy\right)dx=

=12π+(x+3)exp((x2)2/2)dx=5=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{+\infty}(x+3)\exp (− (x-2)^2/2)dx=5


E(Z)=+++zf(x,y,z)dxdydz=E(Z)=\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}zf(x,y,z)dxdydz=

=ke13/2+zexp(z2/2)dz+exp((x2)2/2)(+exp((yx3)2/2)dy)dx==ke^{-13/2}\int\limits_{-\infty}^{+\infty}z\exp(- z^2/2)dz\int\limits_{-\infty}^{+\infty}\exp (−(x-2)^2/2)\left(\int\limits_{-\infty}^{+\infty}\exp(−(y-x-3)^2 /2)dy\right)dx=

=0=0


(3)

fX,Z(x,z)=+f(x,y,z)dy=+kexp[((x2)2(yx3)2+z213)/2]dy=f_{X,Z} (x, z)=\int\limits_{-\infty}^{+\infty}f(x,y,z)dy=\int\limits_{-\infty}^{+\infty} k \exp [− ((x-2)^2 − (y-x-3)^2 + z^2 -13)/2]dy=

=x+32πexp[((x2)2+z2)/2]=\frac{x+3}{2\pi}\exp [− ((x-2)^2 + z^2 )/2]


V(X)=+++(x2)2f(x,y,z)dxdydz=V(X)=\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}(x-2)^2f(x,y,z)dxdydz=

=ke13/2+ez2/2dz+(x2)2e(x2)2/2(+e(yx3)2/2dy)dx=1=ke^{-13/2}\int\limits_{-\infty}^{+\infty}e^{- z^2/2}dz\int\limits_{-\infty}^{+\infty}(x-2)^2 e^{−(x-2)^2/2} \left(\int\limits_{-\infty}^{+\infty}e^{−(y-x-3)^2 /2}dy\right)dx=1


V(Y)=+++(y5)2f(x,y,z)dxdydz=V(Y)=\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}(y-5)^2f(x,y,z)dxdydz=

=ke13/2+ez2/2dz+e(x2)2/2(+(y5)2e(yx3)2/2dy)dx==ke^{-13/2}\int\limits_{-\infty}^{+\infty}e^{- z^2/2}dz\int\limits_{-\infty}^{+\infty} e^{−(x-2)^2/2} \left(\int\limits_{-\infty}^{+\infty}(y-5)^2e^{−(y-x-3)^2 /2}dy\right)dx=

=12π+e(x2)2/2(+(y+x2)2ey2/2dy)dx==\frac{1}{2\pi}\int\limits_{-\infty}^{+\infty} e^{−(x-2)^2/2} \left(\int\limits_{-\infty}^{+\infty}(y+x-2)^2e^{−y^2 /2}dy\right)dx=

=12π+(1+(x2)2)e(x2)2/2dx==\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{+\infty} (1+(x-2)^2)e^{−(x-2)^2/2}dx=

=12π+(1+x2)ex2/2dx=2=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{+\infty} (1+x^2)e^{−x^2/2}dx=2


(4) Cov(X,Z)=+++z(x2)f(x,y,z)dxdydz=Cov(X, Z)=\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}z(x-2)f(x,y,z)dxdydz=

=ke13/2+zez2/2dz+(x2)e(x2)2/2(+e(yx3)2/2dy)dx=0=ke^{-13/2}\int\limits_{-\infty}^{+\infty}ze^{- z^2/2}dz\int\limits_{-\infty}^{+\infty}(x-2) e^{−(x-2)^2/2} \left(\int\limits_{-\infty}^{+\infty}e^{−(y-x-3)^2 /2}dy\right)dx=0


Therefore, Corr(X,Z)=Cov(X,Z)/(σXσZ)=0Corr(X,Z)=Cov(X,Z)/(\sigma_X\sigma_Z)=0


Cov(X,Y)=+++(x2)(y5)f(x,y,z)dxdydz=Cov(X, Y)=\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}(x-2)(y-5)f(x,y,z)dxdydz=

=ke13/2+ez2/2dz+(x2)e(x2)2/2(+(y5)e(yx3)2/2dy)dx==ke^{-13/2}\int\limits_{-\infty}^{+\infty}e^{- z^2/2}dz\int\limits_{-\infty}^{+\infty}(x-2) e^{−(x-2)^2/2} \left(\int\limits_{-\infty}^{+\infty}(y-5)e^{−(y-x-3)^2 /2}dy\right)dx=

=12π+(x2)e(x2)2/2(+(y+x2)ey2/2dy)dx==\frac{1}{2\pi}\int\limits_{-\infty}^{+\infty}(x-2) e^{−(x-2)^2/2} \left(\int\limits_{-\infty}^{+\infty}(y+x-2)e^{−y^2 /2}dy\right)dx=

=12π+(x2)2e(x2)2/2dx=1=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{+\infty}(x-2)^2 e^{−(x-2)^2/2}dx=1


σX=V(X)=1\sigma_X=\sqrt{V(X)}=1

σY=V(Y)=2\sigma_Y=\sqrt{V(Y)}=\sqrt{2}


Cov(X,Y)=Corr(X,Y)/(σXσY)=1/(12)=2/2Cov(X, Y)=Corr(X,Y)/(\sigma_X\sigma_Y)=1/(1\cdot\sqrt{2})=\sqrt{2}/2


5.W=X+ZW=X+Z

P(W<w)=+++Ix+z<w(x,y,z)f(x,y,z)dxdydz=P(W<w)=\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}I_{x+z<w}(x,y,z)f(x,y,z)dxdydz=

=ke13/2+ez2/2wze(x2)2/2+e(yx3)2/2dydxdz==ke^{-13/2}\int\limits_{-\infty}^{+\infty}e^{- z^2/2}\int\limits_{-\infty}^{w-z}e^{−(x-2)^2/2} \int\limits_{-\infty}^{+\infty}e^{−(y-x-3)^2 /2}dydxdz=

=12π+ez2/2wze(x2)2/2dxdz=\frac{1}{2\pi}\int\limits_{-\infty}^{+\infty}e^{- z^2/2}\int\limits_{-\infty}^{w-z}e^{−(x-2)^2/2} dxdz


fW(w)=ddwP(W<w)=12πddw+ez2/2wze(x2)2/2dxdz=f_W(w)=\frac{d}{dw}P(W<w)=\frac{1}{2\pi}\frac{d}{dw}\int\limits_{-\infty}^{+\infty}e^{- z^2/2}\int\limits_{-\infty}^{w-z}e^{−(x-2)^2/2} dxdz=

=12π+ez2/2e(wz2)2/2dz==\frac{1}{2\pi}\int\limits_{-\infty}^{+\infty}e^{- z^2/2}e^{−(w-z-2)^2/2}dz=

=12π+e(2z22zw+w2+4z4w+4)/2dz==\frac{1}{2\pi}\int\limits_{-\infty}^{+\infty}e^{-(2z^2-2zw+w^2+4z-4w+4)/2}dz=

=12π+e(zw/2+1)2e(w2)2/4dz==\frac{1}{2\pi}\int\limits_{-\infty}^{+\infty}e^{-(z-w/2+1)^2}e^{-(w-2)^2/4}dz=

=12πe(w2)2/4+ez2dz=12πe(w2)2/4=\frac{1}{2\pi}e^{-(w-2)^2/4}\int\limits_{-\infty}^{+\infty}e^{-z^2}dz=\frac{1}{2\sqrt{\pi}}e^{-(w-2)^2/4}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS