Answer to Question #215040 in Statistics and Probability for Rana M Liaqat

Question #215040
Q.3 : Let X, Y be two random numbers with joint distribution function

f (x, y) = K x for y ≤ x ≤ y + 1, 0 ≤ y ≤ 2,

= 0 otherwise.

(a) Compute K.

(b) Compute the m.d.f. and the expectation of X.
1
Expert's answer
2021-07-11T17:33:54-0400

"1=\\int\\limits_{-\\infty}^{+\\infty}\\int\\limits_{-\\infty}^{+\\infty}f(x,y)dxdy=\\int\\limits_{0}^{2}\\left(\\int\\limits_{y}^{y+1}Kx dx\\right)dy="

"=\\frac{K}{2}\\int\\limits_{0}^{2}((y+1)^2-y^2)dy=K\\int\\limits_{0}^{2}(y+0.5)dy="

"=\\frac{K}{2}(y+0.5)^2|_0^2=\\frac{K}{2}(2.5^2-0.5^2)=3K"

Therefore, K=1/3.


"E(X)=\\int\\int xf(x,y)dxdy=\\int\\limits_{0}^{2}\\left(\\int\\limits_{y}^{y+1}\\frac{x^2}{3} dx\\right)dy="

"=\\frac{1}{9}\\int\\limits_{0}^{2}((y+1)^3-y^3)dy=\\frac{1}{36}((y+1)^4-y^4)|_0^2="

"(3^4-2^4-1^4+0^4)\/36=16\/9"


The probability density function of X is

"f_X(x)=\\int f(x,y)dy"

If "x\\notin[0,3]" then "f_X(x)=0", otherwise

"f_X(x)=\\int\\limits_{\\max\\{0,x-1\\}}^{\\min\\{x,2\\}}\\frac{x}{3}dy=\\frac{x}{3}(\\min\\{x,2\\}-\\max\\{0,x-1\\})"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog