Question #215040
Q.3 : Let X, Y be two random numbers with joint distribution function

f (x, y) = K x for y ≤ x ≤ y + 1, 0 ≤ y ≤ 2,

= 0 otherwise.

(a) Compute K.

(b) Compute the m.d.f. and the expectation of X.
1
Expert's answer
2021-07-11T17:33:54-0400

1=++f(x,y)dxdy=02(yy+1Kxdx)dy=1=\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}f(x,y)dxdy=\int\limits_{0}^{2}\left(\int\limits_{y}^{y+1}Kx dx\right)dy=

=K202((y+1)2y2)dy=K02(y+0.5)dy==\frac{K}{2}\int\limits_{0}^{2}((y+1)^2-y^2)dy=K\int\limits_{0}^{2}(y+0.5)dy=

=K2(y+0.5)202=K2(2.520.52)=3K=\frac{K}{2}(y+0.5)^2|_0^2=\frac{K}{2}(2.5^2-0.5^2)=3K

Therefore, K=1/3.


E(X)=xf(x,y)dxdy=02(yy+1x23dx)dy=E(X)=\int\int xf(x,y)dxdy=\int\limits_{0}^{2}\left(\int\limits_{y}^{y+1}\frac{x^2}{3} dx\right)dy=

=1902((y+1)3y3)dy=136((y+1)4y4)02==\frac{1}{9}\int\limits_{0}^{2}((y+1)^3-y^3)dy=\frac{1}{36}((y+1)^4-y^4)|_0^2=

(342414+04)/36=16/9(3^4-2^4-1^4+0^4)/36=16/9


The probability density function of X is

fX(x)=f(x,y)dyf_X(x)=\int f(x,y)dy

If x[0,3]x\notin[0,3] then fX(x)=0f_X(x)=0, otherwise

fX(x)=max{0,x1}min{x,2}x3dy=x3(min{x,2}max{0,x1})f_X(x)=\int\limits_{\max\{0,x-1\}}^{\min\{x,2\}}\frac{x}{3}dy=\frac{x}{3}(\min\{x,2\}-\max\{0,x-1\})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS