"1=\\int\\limits_{-\\infty}^{+\\infty}\\int\\limits_{-\\infty}^{+\\infty}f(x,y)dxdy=\\int\\limits_{0}^{2}\\left(\\int\\limits_{y}^{y+1}Kx dx\\right)dy="
"=\\frac{K}{2}\\int\\limits_{0}^{2}((y+1)^2-y^2)dy=K\\int\\limits_{0}^{2}(y+0.5)dy="
"=\\frac{K}{2}(y+0.5)^2|_0^2=\\frac{K}{2}(2.5^2-0.5^2)=3K"
Therefore, K=1/3.
"E(X)=\\int\\int xf(x,y)dxdy=\\int\\limits_{0}^{2}\\left(\\int\\limits_{y}^{y+1}\\frac{x^2}{3} dx\\right)dy="
"=\\frac{1}{9}\\int\\limits_{0}^{2}((y+1)^3-y^3)dy=\\frac{1}{36}((y+1)^4-y^4)|_0^2="
"(3^4-2^4-1^4+0^4)\/36=16\/9"
The probability density function of X is
"f_X(x)=\\int f(x,y)dy"
If "x\\notin[0,3]" then "f_X(x)=0", otherwise
"f_X(x)=\\int\\limits_{\\max\\{0,x-1\\}}^{\\min\\{x,2\\}}\\frac{x}{3}dy=\\frac{x}{3}(\\min\\{x,2\\}-\\max\\{0,x-1\\})"
Comments
Leave a comment