1=−∞∫+∞−∞∫+∞f(x,y)dxdy=0∫2(y∫y+1Kxdx)dy=
=2K0∫2((y+1)2−y2)dy=K0∫2(y+0.5)dy=
=2K(y+0.5)2∣02=2K(2.52−0.52)=3K
Therefore, K=1/3.
E(X)=∫∫xf(x,y)dxdy=0∫2(y∫y+13x2dx)dy=
=910∫2((y+1)3−y3)dy=361((y+1)4−y4)∣02=
(34−24−14+04)/36=16/9
The probability density function of X is
fX(x)=∫f(x,y)dy
If x∈/[0,3] then fX(x)=0, otherwise
fX(x)=max{0,x−1}∫min{x,2}3xdy=3x(min{x,2}−max{0,x−1})
Comments