Question #214793

Let X and Y be independent random variable with means 3 ,5 and variances 16,25 respectively. Find the mean and standard deviations of 5X-3Y?


1
Expert's answer
2021-07-08T08:10:18-0400

Solution:

μX=3,μY=5σX2=16,σY2=25\mu_X=3,\mu_Y=5 \\\sigma_X^2=16, \sigma_Y^2=25

σX=4,σY=5\Rightarrow \sigma_X=4, \sigma_Y=5

For 5X3Y5X-3Y:

Mean=E[5X3Y]=5E[X]3E[Y]=5(3)3(5)=0=E[5X-3Y]=5E[X]-3E[Y]=5(3)-3(5)=0

Variance=Var[5X3Y]=25Var[X]+9Var[Y]2(5)(3)Cov(X,Y)=Var[5X-3Y]=25Var[X]+9Var[Y]-2(5)(3)Cov(X,Y)

Cov(X,Y)=0Cov(X,Y)=0 for independent random variable.

Thus, Var[5X3Y]=25(4)+9(5)0=10045=55Var[5X-3Y]=25(4)+9(5)-0=100-45=55

Then, standard deviation=55=\sqrt{55}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS