Solution:
μX=3,μY=5σX2=16,σY2=25
⇒σX=4,σY=5
For 5X−3Y:
Mean=E[5X−3Y]=5E[X]−3E[Y]=5(3)−3(5)=0
Variance=Var[5X−3Y]=25Var[X]+9Var[Y]−2(5)(3)Cov(X,Y)
Cov(X,Y)=0 for independent random variable.
Thus, Var[5X−3Y]=25(4)+9(5)−0=100−45=55
Then, standard deviation=55
Comments