Let X and Y be independent random variable with means 3 ,5 and variances 16,25 respectively. Find the mean and standard deviations of 5X-3Y?
Solution:
"\\mu_X=3,\\mu_Y=5\n\\\\\\sigma_X^2=16, \\sigma_Y^2=25"
"\\Rightarrow \\sigma_X=4, \\sigma_Y=5"
For "5X-3Y":
Mean"=E[5X-3Y]=5E[X]-3E[Y]=5(3)-3(5)=0"
Variance"=Var[5X-3Y]=25Var[X]+9Var[Y]-2(5)(3)Cov(X,Y)"
"Cov(X,Y)=0" for independent random variable.
Thus, "Var[5X-3Y]=25(4)+9(5)-0=100-45=55"
Then, standard deviation"=\\sqrt{55}"
Comments
Leave a comment