Question #214782

b) ABC Ltd is evaluating to invest in two projects. Project X may yield a return of £1.5m with a probability of 20%, or a return of £5m with a probability of 60%. Project Y, instead, may earn a negative return of £3m with a probability of 70% or a positive return of £7m with a probability of 30%.

1) How much is the expected return for project X and Y?

2) What is the standard deviation?

3) Compare and briefly discuss the expected return and risk of the projects.


1
Expert's answer
2021-07-09T08:54:45-0400

Solution:

1):

E[X]=£1.5 m×0.20+£5 m×0.60=£3.3 mE[X]=£1.5\ m\times 0.20+£5\ m\times 0.60=£3.3\ m

E[Y]=£3 m×0.70+£7 m×0.30=£0 mE[Y]=-£3\ m\times 0.70+£7\ m\times 0.30=£0\ m

2):

E[X2]=(£1.5 m)2×0.20+(£5 m)2×0.60=£215.45 m2E[X^2]=(£1.5\ m)^2\times 0.20+(£5\ m)^2\times 0.60=£^215.45\ m^2

E[Y2]=(£3 m)2×0.70+(£7 m)2×0.30=£221 m2E[Y^2]=(-£3\ m)^2\times 0.70+(£7\ m)^2\times 0.30=£^221\ m^2

Now, variances:

V[X]=E[X2](E[X])2=15.45(3.3)2=£24.56 m2V[X]=E[X^2]-(E[X])^2=15.45-(3.3)^2=£^24.56\ m^2

V[Y]=E[Y2](E[Y])2=21(0)2=£221 m2V[Y]=E[Y^2]-(E[Y])^2=21-(0)^2=£^221\ m^2

Then, standard deviations:

SDX=V[X]=4.56=£2.135 mSD_X=\sqrt{V[X]}=\sqrt{4.56}=£2.135\ m

SDY=V[Y]=21=£4.582 mSD_Y=\sqrt{V[Y]}=\sqrt{21}=£4.582\ m

3):

The expected return in project X is £3.3 m, whereas, in project Y, it is £0 m.

So, there is a bigger risk in project Y as the return is nil.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS