Solution:
(a) "X\\sim N(\\mu,\\sigma)"
"\\mu=170,\\sigma=\\sqrt{36}=6"
(i): "P(160\\le X\\le175)=P(X\\le 175)-P(X\\le 160)"
"=P(z\\le \\dfrac{175-170}{6})-P(z\\le \\dfrac{160-170}{6})\n\\\\=P(z\\le0.83)-P(z\\le-1.67)\n\\\\=P(z\\le0.83)-[1-P(z\\le1.67)]\n\\\\=0.79673-[1-0.95254]\n\\\\=0.74927"
(ii): "P(X>164)=1-P(X\\le 164)=1-P(z\\le\\dfrac{164-170}{6})"
"=1-P(z\\le -1)=1-[1-P(z\\le 1)]=P(z\\le 1)\n\\\\=0.84134"
(iii): "P(X<180)=P(z\\le\\dfrac{180-170}{6})=P(z\\le 1.67)=0.95254"
(b) "X\\sim N(\\mu,\\sigma)"
"\\mu=25,\\sigma=4.5"
"P(X<15)=P(z<\\dfrac{15-25}{4.5})=P(z< -2.22)\n\\\\=1-P(z<2.22)\n\\\\=1-0.98679=0.01321"
Now, required number of calls"=0.01321\\times80=1.0568\\approx 1"
Comments
Leave a comment