A gaussian random variable X has ππ₯ = 2, and ππ₯ = 2 . (a) Find P(X > 1.0). (b) Find P(X < β1.0).
The probability density function is: "f(x)=\\frac{1}{\\sigma\\sqrt{2\\pi}}e^{-\\frac12\\left(\\frac{x-\\mu}{\\sigma}\\right)^2}" with "\\mu=2" and "\\sigma=2".
a). "P(X>1.0)=\\int_1^{+\\infty}\\frac{1}{2\\sqrt{2\\pi}}e^{-\\frac12\\left(\\frac{x-2}{2}\\right)^2}dx\\approx0.6915"
b). "P(X<-1.0)=\\int_{-\\infty}^{-1}\\frac{1}{2\\sqrt{2\\pi}}e^{-\\frac12\\left(\\frac{x-2}{2}\\right)^2}dx\\approx0.067"
The following sequence of commands in Maple was used:
restart;
s:=2;u:=2;
f:=1/s/sqrt(2*Pi)*exp(-1/2*((x-u)/s)^2);
evalf(int(f,x=1..+infinity));
evalf(int(f,x=-infinity..-1));
Comments
Leave a comment