A gaussian random variable X has 𝜇𝑥 = 2, and 𝜎𝑥 = 2 . (a) Find P(X > 1.0). (b) Find P(X < −1.0).
The probability density function is: f(x)=1σ2πe−12(x−μσ)2f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac12\left(\frac{x-\mu}{\sigma}\right)^2}f(x)=σ2π1e−21(σx−μ)2 with μ=2\mu=2μ=2 and σ=2\sigma=2σ=2.
a). P(X>1.0)=∫1+∞122πe−12(x−22)2dx≈0.6915P(X>1.0)=\int_1^{+\infty}\frac{1}{2\sqrt{2\pi}}e^{-\frac12\left(\frac{x-2}{2}\right)^2}dx\approx0.6915P(X>1.0)=∫1+∞22π1e−21(2x−2)2dx≈0.6915
b). P(X<−1.0)=∫−∞−1122πe−12(x−22)2dx≈0.067P(X<-1.0)=\int_{-\infty}^{-1}\frac{1}{2\sqrt{2\pi}}e^{-\frac12\left(\frac{x-2}{2}\right)^2}dx\approx0.067P(X<−1.0)=∫−∞−122π1e−21(2x−2)2dx≈0.067
The following sequence of commands in Maple was used:
restart;
s:=2;u:=2;
f:=1/s/sqrt(2*Pi)*exp(-1/2*((x-u)/s)^2);
evalf(int(f,x=1..+infinity));
evalf(int(f,x=-infinity..-1));
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments