Question #214239

A gaussian random variable X has 𝜇𝑥 = 2, and 𝜎𝑥 = 2 . (a) Find P(X > 1.0). (b) Find P(X < −1.0).


1
Expert's answer
2021-07-12T05:35:16-0400

The probability density function is: f(x)=1σ2πe12(xμσ)2f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac12\left(\frac{x-\mu}{\sigma}\right)^2} with μ=2\mu=2 and σ=2\sigma=2.

a). P(X>1.0)=1+122πe12(x22)2dx0.6915P(X>1.0)=\int_1^{+\infty}\frac{1}{2\sqrt{2\pi}}e^{-\frac12\left(\frac{x-2}{2}\right)^2}dx\approx0.6915

b). P(X<1.0)=1122πe12(x22)2dx0.067P(X<-1.0)=\int_{-\infty}^{-1}\frac{1}{2\sqrt{2\pi}}e^{-\frac12\left(\frac{x-2}{2}\right)^2}dx\approx0.067

The following sequence of commands in Maple was used:

restart;

s:=2;u:=2;

f:=1/s/sqrt(2*Pi)*exp(-1/2*((x-u)/s)^2);

evalf(int(f,x=1..+infinity));

evalf(int(f,x=-infinity..-1));


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS