Question #212516

Given that p(x) =(k/2^x)s a probability distribution for a random variable that can take on the values x = 0, 1, 2, 3, and 4.

a. Find k.

b. Find the expression for the cdf F(x) of the random variable.


1
Expert's answer
2021-07-05T09:11:10-0400

a.


p=k2x,x=0,1,2,3,4p=\dfrac{k}{2^x}, x=0,1,2,3,4

k20+k21+k22+k23+k24=1\dfrac{k}{2^0}+\dfrac{k}{2^1}+\dfrac{k}{2^2}+\dfrac{k}{2^3}+\dfrac{k}{2^4}=1

k16(16+8+4+2+1)=1\dfrac{k}{16}(16+8+4+2+1)=1

k=1631k=\dfrac{16}{31}

b.


F(x)=P(Xx)=y:yxp(y)F(x)=P(X\leq x)=\sum_{y:y\leq x}p(y)

F(x)=0,x<0F(x)=0, x<0

F(x)=16/31,0x<1F(x)=16/31, 0\leq x<1

F(x)=16/31+8/31=24/31,1x<2F(x)=16/31+8/31=24/31, 1\leq x<2

F(x)=24/31+4/31=28/31,2x<3F(x)=24/31+4/31=28/31, 2\leq x<3

F(x)=28/31+2/31=30/31,3x<4F(x)=28/31+2/31=30/31, 3\leq x<4

F(x)=30/31+1/31=1,x4F(x)=30/31+1/31=1, x\geq4

F(x)={0,for x<016/31,for 0x<124/31,for 1x<228/31,for 2x<330/31,for 3x<41,for x4.F(x) = \begin{cases} 0, &\text{for } x<0 \\ 16/31, &\text{for } 0\leq x<1\\ 24/31, &\text{for } 1\leq x<2\\ 28/31,&\text{for } 2\leq x<3\\ 30/31,&\text{for } 3\leq x<4\\ 1,&\text{for } x\geq4.\\ \end{cases}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS