Question #210795
Calculate the standard deviation of the following data;

45, 50, 67, 68, 75, 80, 70, 65, 70,90
1
Expert's answer
2021-06-28T03:53:25-0400

n=10n=10


μ=i=1nxin=110(45+50+67+68+75+80\mu=\dfrac{\displaystyle\sum_{i=1}^nx_i}{n}=\dfrac{1}{10}(45+50+67+68+75+80

+70+65+70+90)=68+70+65+70+90)=68

σ2=i=1n(xiμ)2n=110((4568)2+(5068)2\sigma^2=\dfrac{\displaystyle\sum_{i=1}^n(x_i-\mu)^2}{n}=\dfrac{1}{10}((45-68)^2+(50-68)^2

+(6768)2+(6868)2+(7568)2+(67-68)^2+(68-68)^2+(75-68)^2

+(8068)2+(7068)2+(6568)2+(80-68)^2+(70-68)^2+(65-68)^2


+(7068)2+(9068)2)=154.8+(70-68)^2+(90-68)^2)=154.8

σ=σ2=154.812.4419\sigma=\sqrt{\sigma^2}=\sqrt{154.8}\approx12.4419


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS