Answer to Question #210389 in Statistics and Probability for Reyan Hassan

Question #210389

In a school, 30 percent of the students do not travel by bus. From a sample

of 10 students find the probability that (a) at least 3 students travel by bus

(b) at most 4 students travel by bus (c) between 2 and 7 clients students

travel by bus (exclusive)



1
Expert's answer
2021-06-25T07:06:46-0400

Let X=X= the number of students who travels by bus: XBin(n,p).X\sim Bin (n, p).

Given n=10,q=0.3,p=1q=10.3=0.7.n=10, q=0.3, p=1-q=1-0.3=0.7.

(a)


P(X3)=1P(X=0)P(X=1)P(X=2)P(X\geq3)=1-P(X=0)-P(X=1)-P(X=2)

=1(100)(0.7)0(0.3)100(101)(0.7)1(0.3)101=1-\dbinom{10}{0}(0.7)^{0}(0.3)^{10-0}-\dbinom{10}{1}(0.7)^{1}(0.3)^{10-1}

(102)(0.7)2(0.3)102=0.9984096136-\dbinom{10}{2}(0.7)^{2}(0.3)^{10-2}=0.9984096136

0.9984\approx0.9984

(b)


P(X4)=P(X=0)+P(X=1)+P(X=2)P(X\leq4)=P(X=0)+P(X=1)+P(X=2)

+P(X=3)+P(X=4)=(100)(0.7)0(0.3)100+P(X=3)+P(X=4)=\dbinom{10}{0}(0.7)^{0}(0.3)^{10-0}

+(101)(0.7)1(0.3)101+(102)(0.7)2(0.3)102+\dbinom{10}{1}(0.7)^{1}(0.3)^{10-1}+\dbinom{10}{2}(0.7)^{2}(0.3)^{10-2}

+(103)(0.7)3(0.3)103+(104)(0.7)4(0.3)104+\dbinom{10}{3}(0.7)^{3}(0.3)^{10-3}+\dbinom{10}{4}(0.7)^{4}(0.3)^{10-4}

=0.04734898740.0473=0.0473489874\approx0.0473

(c)


P(2<X<7)=P(X=3)+P(X=4)P(2<X<7)=P(X=3)+P(X=4)

+P(X=5)+P(X=6)=(103)(0.7)3(0.3)103+P(X=5)+P(X=6)=\dbinom{10}{3}(0.7)^{3}(0.3)^{10-3}

+(104)(0.7)4(0.3)104+(105)(0.7)5(0.3)105+\dbinom{10}{4}(0.7)^{4}(0.3)^{10-4}+\dbinom{10}{5}(0.7)^{5}(0.3)^{10-5}

+(106)(0.7)6(0.3)106=0.009001692+\dbinom{10}{6}(0.7)^{6}(0.3)^{10-6}=0.009001692

+0.036756909+0.1029193452+0.036756909+0.1029193452

+0.200120949=0.34879889520.3488+0.200120949=0.3487988952\approx0.3488



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment