Question #209978

A machine fills boxes with chocolate balls. The weights of the empty boxes are normally

distributed with a mean of 150 g and a standard deviation of 10 g. The mean weight of each

chocolate ball is 40 g with a standard deviation of 0.8 g. A full box contains 25 chocolate balls.


1
Expert's answer
2021-06-24T09:07:39-0400

Let XXand YY be independent random variables that are normally distributed (and therefore also jointly so), then their sum is also normally distributed. i.e., if

XN(μX,σX2),YN(μY,σY2),X\sim N(\mu_X, \sigma_X^2), Y\sim N(\mu_Y, \sigma_Y^2),

W=X+Y,W=X+Y,

Then WN(μX+μY,σX2+σY2).W\sim N(\mu_X+\mu_Y, \sigma_X^2+\sigma_Y^2).

a. Let X=X= the weight of the empty box, Y1,Y2,...Y25Y_1, Y_2, ...Y_{25} represent the weights of chocolate balls, W=X+Y1+Y2+...+Y25W=X+Y_1+Y_2+...+Y_{25} represents the weight of of a full box of chocolate balls.

Given XN(μX,σX2),μX=150 g,σX=10 gX\sim N(\mu_X, \sigma_X^2), \mu_X=150\ g, \sigma_X=10\ g


YiN(μYi,σYi2),μYi=40 g,σYi=0.8 g,i=1,2,...,25Y_i\sim N(\mu_{Y_i}, \sigma_{Y_i}^2), \mu_{Y_i}=40\ g, \sigma_{Y_i}=0.8\ g, i=1,2,...,25

Then

WN(μW,σW2))W\sim N(\mu_W, \sigma_W^2))

The mean weight of a full box of chocolate balls is


μW=μX+μY1+μY2+...+μY25\mu_W=\mu_X+\mu_{Y_1}+\mu_{Y_2}+...+\mu_{Y_{25}}

=150+25(40)=1150(g)=150+25(40)=1150 (g)

b.

The standard deviation of the weight of a full box of chocolate balls is


σW=σW2\sigma_W=\sqrt{\sigma_W^2}

=σX2+σY12+σY22+...++σY252=\sqrt{\sigma_X^2+\sigma_{Y_1}^2+\sigma_{Y_2}^2+...++\sigma_{Y_{25}}^2}

=102+25(0.8)2=22910.77033=\sqrt{10^2+25(0.8)^2}=2\sqrt{29}\approx10.77033

c.


P(W<1140)=P(Z<11401150229)P(W<1140)=P(Z<\dfrac{1140-1150}{2\sqrt{29}})

(Z<0.9284767)0.17658\approx(Z<-0.9284767)\approx0.17658

d. Let VV =the weight of the box of chocolate squares: VN(μV,σV2).V\sim N(\mu_V, \sigma_V^2).


P(V<800)=P(Z<800μVσV)=0.19P(V<800)=P(Z<\dfrac{800-\mu_V}{\sigma_V})=0.19

800μVσV0.877896\dfrac{800-\mu_V}{\sigma_V}\approx-0.877896


P(V>1200)=1P(Z1200μVσV)=0.28P(V>1200)=1-P(Z\leq\dfrac{1200-\mu_V}{\sigma_V})=0.28

1200μVσV0.582842\dfrac{1200-\mu_V}{\sigma_V}\approx0.582842


μV=800+0.877896σV\mu_V=800+0.877896\sigma_V

12008000.8777896σV=0.582842σV1200-800-0.8777896\sigma_V=0.582842\sigma_V

σV273.8541 g\sigma_V\approx273.8541\ g


μV1040.4138 g\mu_V\approx1040.4138\ g


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS