The mean of binomial distribution is and the variance is 9/4.Evaluate PMF
If "X\\sim Bin(n, p)," then "E[X]=np, V[X]=np(1-p), \\sigma_X=\\sqrt{np(1-p)}."
Given "E[X]=3, V[X]=\\dfrac{9}{4}." Then
"np(1-p)=\\dfrac{9}{4}"
"1-p=\\dfrac{3}{4}"
"p=\\dfrac{1}{4}"
"n=12"
"f(x; 12,\\dfrac{1}{4})= \\begin{cases}\n \\dbinom{12}{x}(\\dfrac{1}{4})^x(1-\\dfrac{1}{4})^{12-x},x=0, 1, ..., 12 \\\\\n otherwise\n\\end{cases}"
Comments
Leave a comment