Question #209143

The mean of binomial distribution is and the variance is 9/4.Evaluate PMF


1
Expert's answer
2021-06-21T16:35:53-0400

If XBin(n,p),X\sim Bin(n, p), then E[X]=np,V[X]=np(1p),σX=np(1p).E[X]=np, V[X]=np(1-p), \sigma_X=\sqrt{np(1-p)}.

Given E[X]=3,V[X]=94.E[X]=3, V[X]=\dfrac{9}{4}. Then


np=3np=3

np(1p)=94np(1-p)=\dfrac{9}{4}

1p=341-p=\dfrac{3}{4}

p=14p=\dfrac{1}{4}

n=12n=12

f(x;12,14)={(12x)(14)x(114)12x,x=0,1,...,12otherwisef(x; 12,\dfrac{1}{4})= \begin{cases} \dbinom{12}{x}(\dfrac{1}{4})^x(1-\dfrac{1}{4})^{12-x},x=0, 1, ..., 12 \\ otherwise \end{cases}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS