] Suppose that the Mean and S.D of the tuition fee paid by BS Mathematics students in UMT is 150 and 30 in UDs, respectively. It is assumed that data is normally distributed. If a student is selected at random, find the probability that the amount paid by him is
i) Less than 105
ii) Between 120 to 180
iii) Not between 140 and 160
iv) Greater than 180
v) Between 130 and 160 GIVEN THAT between 140 to 180
vi) Between 120 and 160 OR Between 130 and 180
Let "X=" the amount paid by student; "X\\sim N(\\mu, \\sigma^2)."
Given "\\mu=150, \\sigma=30"
i)
"=P(Z<-1.5)\\approx0.0668"
ii)
"=P(X<180)-P(X\\leq120)"
"=P(Z<\\dfrac{180-150}{30})-P(Z\\leq\\dfrac{120-150}{30})"
"=P(Z<1)-P(Z\\leq-1)"
"\\approx0.841345-0.158655\\approx0.6827"
iii)
"=P(X<140)+1-P(X\\leq160)"
"=P(Z<\\dfrac{140-150}{30})+1-P(Z\\leq\\dfrac{160-150}{30})"
"\\approx P(Z<-0.33333)+1-P(Z\\leq0.33333)"
"\\approx0.36944+0.36944\\approx0.7389"
iv)
"=1-P(Z\\leq \\dfrac{180-150}{30})"
"=1-P(Z\\leq1)\\approx0.1587"
v)
"=\\dfrac{P(130<X<160\\cap 140<X<180)}{P(140<X<180)}"
"=\\dfrac{P(140<X<160)}{P(140<X<180)}"
"=\\dfrac{P(Z<\\dfrac{160-150}{30})-P(Z\\leq\\dfrac{140-150}{30})}{P(Z<\\dfrac{180-150}{30})-P(Z\\leq\\dfrac{140-150}{30}))}"
"\\approx\\dfrac{P(Z<0.33333)-P(Z\\leq-0.33333)}{P(Z<1)-P(Z\\leq-0.33333)}"
"\\approx\\dfrac{0.63056-0.36944}{0.84134-0.36944}\\approx0.5533"
vi)
"=P(120<X<180)"
"=P(X<180)-P(X\\leq120)"
"=P(Z<\\dfrac{180-150}{30})-P(Z\\leq\\dfrac{120-150}{30})"
"=P(Z<1)-P(Z\\leq-1)"
"\\approx0.841345-0.158655\\approx0.6827"
Comments
Leave a comment