Question #207310

Estimation and Confidence Intervals

The Greater Pittsburgh Area Chamber of Commerce wants to estimate the mean time workers who are employed in the downtown area spend getting to work. A sample of 15 workers reveals the following number of minutes spent traveling.

29, 38, 38, 33, 38, 21, 45, 34, 40, 37, 37, 42, 30, 29, 35

Requirements:

i) Develop a 90%, 95% and 98 percent confidence interval for the population mean?

ii) Compare and interpret the result?


1
Expert's answer
2021-06-16T09:28:17-0400
29,38,38,33,38,21,45,34,40,37,37,42,30,29,3529, 38, 38, 33, 38, 21, 45, 34, 40, 37, 37, 42, 30, 29, 35

n=15n=15

Sample mean


xˉ=i=1nxin=115(29+38+38+33+38+21\bar{x}= \frac{\displaystyle\sum_{i=1}^nx_i}{n} =\frac{1}{15} (29+38+38+33+38+21




+45+34+40+37+37+42+30+29+35)+45+34+40+37+37+42+30+29+35)

=5261535.066667=\dfrac{526}{15}\approx35.066667

Var(x)=s2=i=1n(xixˉ)2n1Var(x)=s^2= \frac{\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2}{n-1}

=1151((2952615)2+(3852615)2=\frac{1}{15-1}((29-\dfrac{526}{15})^2+(38-\dfrac{526}{15})^2

+(3852615)2+(3352615)2+(3852615)2+(38-\dfrac{526}{15})^2+(33-\dfrac{526}{15})^2+(38-\dfrac{526}{15})^2

+(2152615)2+(4552615)2+(3452615)2+(21-\dfrac{526}{15})^2+(45-\dfrac{526}{15})^2+(34-\dfrac{526}{15})^2


+(4052615)2+(3752615)2+(3752615)2+(40-\dfrac{526}{15})^2+(37-\dfrac{526}{15})^2+(37-\dfrac{526}{15})^2

+(4252615)2+(3852615)2+(2952615)2+(42-\dfrac{526}{15})^2+(38-\dfrac{526}{15})^2+(29-\dfrac{526}{15})^2




+(3552615)236.2095238+(35-\dfrac{526}{15})^2\approx36.2095238

s=s26.017435s=\sqrt{s^2}\approx6.017435

i)

90%

The critical value for α=0.1\alpha=0.1 and df=n1=151=14df=n-1=15-1=14 degrees of freedom is tc=1.76131.t_c=1.76131. The corresponding confidence interval is computed as shown below:


CI=(xˉtc×sn,xˉ+tc×sn)CI=(\bar{x}-t_c\times \dfrac{s}{\sqrt{n}}, \bar{x}+t_c\times \dfrac{s}{\sqrt{n}})

=(35.0666671.76131×6.01743515,=(35.066667-1.76131\times \dfrac{6.017435}{\sqrt{15}},


35.066667+1.76131×6.01743515)35.066667+1.76131\times \dfrac{6.017435}{\sqrt{15}} )

(32.33013,37.80321)\approx(32.33013, 37.80321)

Therefore, based on the data provided, the 90% confidence interval for the population mean is 32.33013<μ<37.80321,32.33013<\mu<37.80321, which indicates that we are 90% confident that the true population mean μ\mu is contained by the interval (32.33013,37.80321).(32.33013, 37.80321).


95%

The critical value for α=0.05\alpha=0.05 and df=n1=151=14df=n-1=15-1=14 degrees of freedom is tc=2.144787.t_c= 2.144787. The corresponding confidence interval is computed as shown below:


CI=(xˉtc×sn,xˉ+tc×sn)CI=(\bar{x}-t_c\times \dfrac{s}{\sqrt{n}}, \bar{x}+t_c\times \dfrac{s}{\sqrt{n}})

=(35.0666672.144787×6.01743515,=(35.066667- 2.144787\times \dfrac{6.017435}{\sqrt{15}},




35.066667+2.144787×6.01743515)35.066667+ 2.144787\times \dfrac{6.017435}{\sqrt{15}} )

(31.73432,38.39901)\approx(31.73432, 38.39901)

Therefore, based on the data provided, the 95% confidence interval for the population mean is 31.73432<μ<38.39901,31.73432<\mu<38.39901, which indicates that we are 95% confident that the true population mean μ\mu is contained by the interval (31.73432,38.39901).(31.73432, 38.39901).



98%

The critical value for α=0.02\alpha=0.02 and df=n1=151=14df=n-1=15-1=14 degrees of freedom is tc=2.624494.t_c= 2.624494. The corresponding confidence interval is computed as shown below:


CI=(xˉtc×sn,xˉ+tc×sn)CI=(\bar{x}-t_c\times \dfrac{s}{\sqrt{n}}, \bar{x}+t_c\times \dfrac{s}{\sqrt{n}})

=(35.0666672.624494×6.01743515,=(35.066667- 2.624494\times \dfrac{6.017435}{\sqrt{15}},




35.066667+2.624494×6.01743515)35.066667+ 2.624494\times \dfrac{6.017435}{\sqrt{15}} )

(30.98900,39.14433)\approx(30.98900, 39.14433)

Therefore, based on the data provided, the 98% confidence interval for the population mean is 30.98900<μ<39.14433,30.98900<\mu<39.14433, which indicates that we are 98% confident that the true population mean μ\mu is contained by the interval (30.98900,39.14433).(30.98900, 39.14433).


ii)

The 90% confidence interval is (32.33013,37.80321).(32.33013, 37.80321).

The 95% confidence interval is (31.73432,38.39901).(31.73432, 38.39901).

The 98% confidence interval is (30.98900,39.14433).(30.98900, 39.14433).


The 95% confidence interval is wider than the 90% confidence interval.

The 98% confidence interval is wider than the 95% confidence interval and wider than the 90% confidence interval.


Increasing the confidence level increases the error bound, making the confidence interval wider.

Decreasing the confidence level decreases the error bound, making the confidence interval narrower.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS