We have population values "1,2,3,4,5,6" population size "N=6" and sample size "n=2."Thus, the number of possible samples which can be drawn with replacement is
"(N)^n=6^2=36"
2.
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n Sample & Sample & Sample \\ mean \\\\\n No. & values & (\\bar{X}) \\\\ \\hline\n 1 & 1,1 & 1.0 \\\\\n \\hdashline\n 2 & 1,2 & 1.5 \\\\\n \\hdashline\n 3 & 1,3 & 2.0 \\\\\n \\hdashline\n 4 & 1,4 & 2.5\\\\\n \\hdashline\n 5 & 1,5 & 3.0 \\\\\n\\hdashline\n 6 & 1,6 & 3.5 \\\\\n \\hline\n 7 & 2,1 & 1.5 \\\\\n \\hline\n 8 & 2,2 & 2.0 \\\\\n \\hline\n 9 & 2,3 & 2.5 \\\\\n \\hline\n 10 & 2,4 & 3.0 \\\\\n \\hline\n 11 & 2,5 & 3.5 \\\\\n \\hline\n12 & 2,6 & 4.0 \\\\\n \\hline\n13 & 3,1 & 2.0 \\\\\n \\hline\n14 & 3,2 & 2.5 \\\\\n \\hline\n15 & 3,3 & 3.0 \\\\\n \\hline\n16 & 3,4 & 3.5 \\\\\n \\hline\n17 & 3,5 & 4.0 \\\\\n \\hline\n18 & 3,6 & 4.5 \\\\\n \\hline\n19 & 4,1 & 2.5 \\\\\n \\hline\n20 & 4,2 & 3.0 \\\\\n \\hline\n21 & 4,3 & 3.5 \\\\\n \\hline\n 22 & 4,4 & 4.0 \\\\\n \\hline\n23 & 4,5 & 4.5 \\\\\n \\hline\n24 & 4,6 & 5.0 \\\\\n \\hline\n25 & 5,1 & 3.0 \\\\\n \\hline\n26 & 5,2 & 3.5 \\\\\n \\hline\n27 & 5,3 & 4.0 \\\\\n \\hline\n28 & 5,4 & 4.5 \\\\\n \\hline\n29 & 5,5 & 5.0 \\\\\n \\hline\n30 & 5,6 & 5.5 \\\\\n \\hline\n31 & 6,1 & 3.5 \\\\\n \\hline\n32 & 6,2 & 4.0 \\\\\n \\hline\n33 & 6,3 & 4.5 \\\\\n \\hline\n34 & 6,4 & 5.0 \\\\\n \\hline\n35 & 6,5 & 5.5 \\\\\n \\hline\n36 & 6,6 & 6.0 \\\\\n \\hline\n\\end{array}"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n \\bar{X} & f & f(\\bar{X}) & \\bar{X}f(\\bar{X})& \\bar{X}^2f(\\bar{X}) \\\\ \\hline\n1.0& 1 & 1\/36 & 2\/72 & 4\/144 \\\\\n \\hdashline\n 1.5 & 2 & 2\/36 & 6\/72 & 18\/144 \\\\\n \\hdashline\n 2.0 & 3 & 3\/36 & 12\/72 & 48\/144 \\\\\n \\hdashline\n 2.5 & 4 & 4\/36 & 20\/72 & 100\/144 \\\\\n \\hdashline\n 3.0 & 5 & 5\/36& 30\/72 & 180\/144 \\\\\n \\hdashline\n 3.5 & 6 & 6\/36 & 42\/72 & 294\/144 \\\\\n \\hdashline\n 4.0 & 5 & 5\/36 & 40\/72 & 320\/144\\\\\n \\hdashline\n 4.5 & 4 & 4\/36 & 36\/72 & 324\/144 \\\\\n \\hdashline\n 5.0 & 3 & 3\/36 & 30\/72 & 300\/144\\\\\n \\hdashline\n 5.5 & 2 & 2\/36 & 22\/72 & 242\/144 \\\\\n \\hdashline\n 6.0 & 1& 1\/36 & 12\/72 & 144\/144\\\\\n \\hdashline\n Total & 36 & 1 & 3.5 & 329\/24 \\\\ \\hline\n\\end{array}"
Mean
"\\mu=\\dfrac{1+2+3+4+5+6}{6}=3.5"
"E(\\bar{X})=\\sum\\bar{X}f(\\bar{X})=3.5"The mean of the sampling distribution of the sample means is equal to the
the mean of the population.
"E(\\bar{X})=3.5=\\mu"
Variance
"\\sigma^2=\\dfrac{1}{6}\\big((1-3.5)^2+(2-3.5)^2+(3-3.5)^2""(4-3.5)^2+(5-3.5)^2+(6-3.5)^2\\big)=\\dfrac{8.75}{3}"
Standard deviation
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{\\dfrac{8.75}{3}}\\approx1.7078"
"Var(\\bar{X})=\\sum\\bar{X}^2f(\\bar{X})-(\\sum\\bar{X}f(\\bar{X}))^2"
"=\\dfrac{329}{24}-(\\dfrac{7}{2})^2=\\dfrac{35}{24}"
"\\sqrt{Var(\\bar{X})}=\\sqrt{\\dfrac{35}{24}}\\approx1.2076"
If a population is infinite and the sampling is random or if the population is finite and the sampling is with replacement, then the variance of the sampling distribution of means, "Var(\\bar{X})" is given by
"Var(\\bar{X})=\\dfrac{\\sigma^2}{n}" Verification:
"Var(\\bar{X})=\\dfrac{\\sigma^2}{n}=\\dfrac{8.75}{3(2)}=\\dfrac{8.75}{6}=\\dfrac{35}{24}, True"
Comments
Leave a comment