I. Two cards are drawn from a well-shuffled ordinary deck of 52 cards. Find the probability that they are both aces if the first card is a) replaced, b) not replaced. II. A ball is drawn at random from a box containing 6 red balls, 4 white balls, and 5 blue balls. Determine the probability that it is (a) red, (b) white, (c) blue, (d) not red, (e) red or white. III. Prove that the mean and variance of a binomially distributed random variable are, respectively, µ = np and σ2 = npq.
(1). Probability of drawing two aces from 52 cards is-
(a) If first is replaced-
"P=\\dfrac{4}{52}\\times \\dfrac{4}{52}=\\dfrac{1}{169}"
(b) If first is not replaced-
"p=\\dfrac{4}{52}\\times \\dfrac{3}{51}=\\dfrac{1}{221}"
(2). Given, 6 Red balls, 4 White balls, 5 blue balls-
Total balls=15
"(a) P(\\text{Red ball})=\\dfrac{6}{15}=\\dfrac{2}{5}\n\n\n\\\\[9pt]\n (b) P(\\text{White ball})=\\dfrac{4}{15}\\\\[9pt]\n\n\n\n (c) P(\\text{Blue ball})=\\dfrac{5}{15}=\\dfrac{1}{3}\\\\[9pt]\n\n\n\n (d) P(\\text{not a Red ball})=1-P(Red ball)=1-\\dfrac{2}{5}=\\dfrac{3}{5}\n\\\\[9pt]\n\n\n (e) P( \\text{Red or White})= P(R)+P(W)=\\dfrac{6}{15}+\\dfrac{4}{15}=\\dfrac{10}{15}=\\dfrac{2}{3}"
(3).
Mean="Ex=\\sum x \\text{ }^nC_x p^xq^{(1-x)}=np"
"x\\times \\dfrac{n!}{(n-x)! x!}=x\\dfrac{n(n-1)!}{(n-x)! x (x-1)!}=n\\text{ }^{n-1} C_{x-1}"
So Mean "= \\sum n\\text{ }^{n-1}C_{x-1}p^{x-1}.p.(1-p)^{n-x}"
"np\\sum ^{n-1}C_{x-1}"
Let x-1=y, n-1=m
So Mean="np \\sum ^mC_y P^y(1-p)^{m-y}"
As we know "\\sum f(x)=1"
So Mean"=np\\times 1=np"
Variance "= E[x^2]-[E(x)]^2=\\sum x(x-1) \\text{ }^n C_xp^xq^{(1-x)}"
So "E[x(x-1)]=\\sum x(x-1) \\text{ } ^nC_xp^xq^{n-x}"
"x(x-1) \\text{ } ^nC_x=x(x-1)\\dfrac{n!}{(n-x)! x!}=x(x-1)\\dfrac{n(n-1)(n-2)!}{(n-x)!x(x-1)(x-2)!}"
"=n(n-1)\\dfrac{(n-2)!}{(n-x)!(x-2)!}\n\n\\\\[9pt]\n\n =n(n-1)\\text{ } ^{n-2}C_{x-2}"
So "E[x(x-1)]=\\sum n(n-1) \\text{ } ^{n-2}C_{x-2} p^{x-2} (1-p)^{n-x}"
"=(n(n-1))p^2 \\sum \\text{ } ^{n-2}C_{x-2} p^{x-2}(1-p)^{n-x}"
Let x-2=y,n-2=m
"=n(n-1)p^2 \\sum \\text{ } ^mC_y p^y(1-p)^{m-y}"
"=n(1-n)p^2 \\times 1"
As "\\sum f(x)=1"
Variance="E(X^2)-[E(x)]^2"
"=E[x(x-1)]+E(X)-[E(x)]^2\n\\\\\n =n(n-1)p^2+np-(np)^2\n\\\\\n =n^2p^2-np^2+np-n^2p^2\n\\\\\n =np(1-p)"
Comments
Leave a comment