Question #206372

I. Two cards are drawn from a well-shuffled ordinary deck of 52 cards. Find the probability that they are both aces if the first card is  a) replaced,  b) not replaced. II. A ball is drawn at random from a box containing 6 red balls, 4 white balls, and 5 blue balls. Determine the probability that it is (a) red, (b) white, (c) blue, (d) not red, (e) red or white. III. Prove that the mean and variance of a binomially distributed random variable are, respectively, µ = np and σ2 = npq. 


1
Expert's answer
2021-06-17T17:57:45-0400

(1). Probability of drawing two aces from 52 cards is-


(a) If first is replaced-


P=452×452=1169P=\dfrac{4}{52}\times \dfrac{4}{52}=\dfrac{1}{169}


(b) If first is not replaced-


p=452×351=1221p=\dfrac{4}{52}\times \dfrac{3}{51}=\dfrac{1}{221}


(2). Given, 6 Red balls, 4 White balls, 5 blue balls-

Total balls=15


(a)P(Red ball)=615=25(b)P(White ball)=415(c)P(Blue ball)=515=13(d)P(not a Red ball)=1P(Redball)=125=35(e)P(Red or White)=P(R)+P(W)=615+415=1015=23(a) P(\text{Red ball})=\dfrac{6}{15}=\dfrac{2}{5} \\[9pt] (b) P(\text{White ball})=\dfrac{4}{15}\\[9pt] (c) P(\text{Blue ball})=\dfrac{5}{15}=\dfrac{1}{3}\\[9pt] (d) P(\text{not a Red ball})=1-P(Red ball)=1-\dfrac{2}{5}=\dfrac{3}{5} \\[9pt] (e) P( \text{Red or White})= P(R)+P(W)=\dfrac{6}{15}+\dfrac{4}{15}=\dfrac{10}{15}=\dfrac{2}{3}


(3).

Mean=Ex=x nCxpxq(1x)=npEx=\sum x \text{ }^nC_x p^xq^{(1-x)}=np

x×n!(nx)!x!=xn(n1)!(nx)!x(x1)!=n n1Cx1x\times \dfrac{n!}{(n-x)! x!}=x\dfrac{n(n-1)!}{(n-x)! x (x-1)!}=n\text{ }^{n-1} C_{x-1}


So Mean =n n1Cx1px1.p.(1p)nx= \sum n\text{ }^{n-1}C_{x-1}p^{x-1}.p.(1-p)^{n-x}


   npn1Cx1np\sum ^{n-1}C_{x-1}


Let x-1=y, n-1=m


So Mean=npmCyPy(1p)mynp \sum ^mC_y P^y(1-p)^{m-y}


As we know f(x)=1\sum f(x)=1


So Mean=np×1=np=np\times 1=np



Variance =E[x2][E(x)]2=x(x1) nCxpxq(1x)= E[x^2]-[E(x)]^2=\sum x(x-1) \text{ }^n C_xp^xq^{(1-x)}



      

So E[x(x1)]=x(x1) nCxpxqnxE[x(x-1)]=\sum x(x-1) \text{ } ^nC_xp^xq^{n-x}


       


  x(x1) nCx=x(x1)n!(nx)!x!=x(x1)n(n1)(n2)!(nx)!x(x1)(x2)!x(x-1) \text{ } ^nC_x=x(x-1)\dfrac{n!}{(n-x)! x!}=x(x-1)\dfrac{n(n-1)(n-2)!}{(n-x)!x(x-1)(x-2)!}

       

=n(n1)(n2)!(nx)!(x2)!=n(n1) n2Cx2=n(n-1)\dfrac{(n-2)!}{(n-x)!(x-2)!} \\[9pt] =n(n-1)\text{ } ^{n-2}C_{x-2}


So E[x(x1)]=n(n1) n2Cx2px2(1p)nxE[x(x-1)]=\sum n(n-1) \text{ } ^{n-2}C_{x-2} p^{x-2} (1-p)^{n-x}

      

=(n(n1))p2 n2Cx2px2(1p)nx=(n(n-1))p^2 \sum \text{ } ^{n-2}C_{x-2} p^{x-2}(1-p)^{n-x}

           Let x-2=y,n-2=m


     =n(n1)p2 mCypy(1p)my=n(n-1)p^2 \sum \text{ } ^mC_y p^y(1-p)^{m-y}


      =n(1n)p2×1=n(1-n)p^2 \times 1   


As f(x)=1\sum f(x)=1


Variance=E(X2)[E(x)]2E(X^2)-[E(x)]^2

     =E[x(x1)]+E(X)[E(x)]2=n(n1)p2+np(np)2=n2p2np2+npn2p2=np(1p)=E[x(x-1)]+E(X)-[E(x)]^2 \\ =n(n-1)p^2+np-(np)^2 \\ =n^2p^2-np^2+np-n^2p^2 \\ =np(1-p)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS