(1). Probability of drawing two aces from 52 cards is-
(a) If first is replaced-
P=524×524=1691
(b) If first is not replaced-
p=524×513=2211
(2). Given, 6 Red balls, 4 White balls, 5 blue balls-
Total balls=15
(a)P(Red ball)=156=52(b)P(White ball)=154(c)P(Blue ball)=155=31(d)P(not a Red ball)=1−P(Redball)=1−52=53(e)P(Red or White)=P(R)+P(W)=156+154=1510=32
(3).
Mean=Ex=∑x nCxpxq(1−x)=np
x×(n−x)!x!n!=x(n−x)!x(x−1)!n(n−1)!=n n−1Cx−1
So Mean =∑n n−1Cx−1px−1.p.(1−p)n−x
np∑n−1Cx−1
Let x-1=y, n-1=m
So Mean=np∑mCyPy(1−p)m−y
As we know ∑f(x)=1
So Mean=np×1=np
Variance =E[x2]−[E(x)]2=∑x(x−1) nCxpxq(1−x)
So E[x(x−1)]=∑x(x−1) nCxpxqn−x
x(x−1) nCx=x(x−1)(n−x)!x!n!=x(x−1)(n−x)!x(x−1)(x−2)!n(n−1)(n−2)!
=n(n−1)(n−x)!(x−2)!(n−2)!=n(n−1) n−2Cx−2
So E[x(x−1)]=∑n(n−1) n−2Cx−2px−2(1−p)n−x
=(n(n−1))p2∑ n−2Cx−2px−2(1−p)n−x
Let x-2=y,n-2=m
=n(n−1)p2∑ mCypy(1−p)m−y
=n(1−n)p2×1
As ∑f(x)=1
Variance=E(X2)−[E(x)]2
=E[x(x−1)]+E(X)−[E(x)]2=n(n−1)p2+np−(np)2=n2p2−np2+np−n2p2=np(1−p)
Comments