Question #205736

Let X1,X2,......,Xbe independently and identically distributed b(1, p) random 

variables. Obtain a confidence internal for p using Chebychev’s inequality.


1
Expert's answer
2022-01-11T15:07:08-0500

 ChebyshevsChebyshev's inequality is given as

p(xμ<kσ)1(1k2)p(|x-\mu|\lt k\sigma )\geqslant 1-(\dfrac{1}{k^2})

where

xx is the point estimate of the parameter whose confidence interval needs to be determined.

σ\sigma is the standard deviation of that parameter.


We are required to determine the confidence interval for the parameter pp of the binomial distribution.

Given the random variables X1,X2,X3,...,XnX_1,X_2,X_3,...,X_n , we need to determine the point estimate for pp.

To do so, let us define the random variable Y=i=1nXi=X1+X2+....+XnY=\sum ^n_{i=1}X_i=X_1+X_2+....+X_n ,

Let p^\hat{p} be the point estimate for pp then p^=i=1nXi/n=Y/n\hat{p}=\sum^n_{i=1}X_i/n=Y/n .

The standard deviation sd (p)\ sd\ (p) for pp is given as,

sd(p)=p^(1p^)nsd(p)=\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}

 

In ChebyshevsChebyshev's inequality stated above we find the value for kk using the 95% confidence.

The right hand side of the inequality is equated with 95% in order to find kk as below,

1(1/k2)=0.95    0.05=1/k2    k2=20    k=4.5(1dp)1-(1/k^2)=0.95\implies0.05=1/k^2\implies k^2=20\implies k=4.5(1dp)

A 95% confidence interval for pp is given as

p^p<ksd(p)|\hat{p}-p|\lt k*sd(p)

This can be re-written as

p^ksd(p)<p<p^+ksd(p)............(i)\hat{p}-k*sd(p)\lt p\lt\hat{p}+k*sd(p)............(i)

Replacing for kk and sd(p)sd(p) in equation(i)equation (i) we have p^4.5p^(1p^)/n<p<p^+4.5p^(1p^)/n\hat{p}-4.5*\sqrt{\hat{p}(1-\hat{p})/n}\lt p\lt \hat{p}+4.5*\sqrt{\hat{p}(1-\hat{p})/n} .

Therefore the 95% confidence interval for the parameter pp is given as

C.I=(p^4.5p^(1p^)/n, p^+4.5p^(1p^)/n)C.I=(\hat{p}-4.5*\sqrt{\hat{p}(1-\hat{p})/n },\space \hat{p}+4.5*\sqrt{\hat{p}(1-\hat{p})/n })

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS