For a given discrete non-negative random variable, ππ₯ = π(π = π₯). Find π₯ such that ππ₯ > ππ₯+1, for the following distributions. a. π is a binomial distribution with π = 16 and π = 0.5 b. π is a Poisson distribution with π = 8 c. π is a Negative Binomial with π = 5 and π = 0.6 State the value of π₯ in the above sections. Verify whether the distributions are skewed for each section.
(a) π is a binomial distribution with π = 16 and π = 0.5.
"p_x=P(X=x)=\\frac{n!}{x!(n-x)!}p^xq^{n-x}"
"\\frac{p_{x+1}}{p_x}=\\left(\\frac{n!}{(x+1)!(n-x-1)!}p^{x+1}q^{n-x-1}\\right) \/\\left( \\frac{n!}{x!(n-x)!}p^xq^{n-x}\\right)=\\frac{n-x}{x+1}\\frac{p}{q}\\leq 1"
"p(n-x)\\leq q(x+1)"
"pn-q\\leq x(p+q)=x"
"pn-q=0.5\\cdot16-0.5=7.5"
The minimal integer "x\\geq 7.5" is 8.
Since "P(X=n-x)=\\frac{n!}{x!(n-x)!}0.5^x0.5^{n-x}=\\frac{n!2^{-n}}{x!(n-x)!}=P(X=x)", any binomial distribution with "p=0.5" is symmetric, hence, it is not skewed.
Answer. x=8
(b) π is a Poisson distribution with π = 8.
"p_x=P(X=x)=\\frac{\\lambda^{x}}{x!}e^{-\\lambda}"
"\\frac{p_{x+1}}{p_x}=\\left(\\frac{\\lambda^{x+1}}{(x+1)!}e^{-\\lambda}\\right) \/\\left(\\frac{\\lambda^{x}}{x!}e^{-\\lambda}\\right)=\\frac{\\lambda}{x+1}\\leq 1"
"x\\geq \\lambda-1=8-1=7"
The minimal integer "x\\geq 7" is 7, this means that the mode of X is equal to 7.
"E(X)=\\sum\\limits_{x=0}^{\\infty}xP(X=x)=\\sum\\limits_{x=0}^{\\infty}x\\frac{\\lambda^{x}}{x!}e^{-\\lambda}="
"=\\lambda e^{-\\lambda}\\sum\\limits_{x=1}^{\\infty}\\frac{\\lambda^{x-1}}{(x-1)!}=\\lambda e^{-\\lambda}e^{\\lambda}=\\lambda=8"
Since "mode(X)=7<E(X)=8", the probability distribution is skewed to the left.
Answer. x=8, the probability distribution is skewed to the left.
(c) π is a Negative Binomial with π = 5 and π = 0.6
"p_x=P(X=x)=\\frac{(x+r-1)!}{x!(r-1)!}q^x p^r"
"\\frac{p_{x+1}}{p_x}=\\left(\\frac{(x+r)!}{(x+1)!(r-1)!}q^{x+1} p^r\\right) \/\\left(\\frac{(x+r-1)!}{x!(r-1)!}q^x p^r\\right)=\\frac{x+r}{x+1}q\\leq1"
"qx+qr\\leq x+1"
"qr-1\\leq px"
"x\\geq (qr-1)\/p=(0.4\\cdot 5-1)\/0.6=5\/3"
The minimal integer "x\\geq 5\/3" is 2.
"E(X)=\\sum\\limits_{x=0}^{\\infty}xP(X=x)=\\sum\\limits_{x=0}^{\\infty}x\\frac{(x+r-1)!}{x!(r-1)!}q^x p^r="
"=\\frac{q}{p}r\\sum\\limits_{x=1}^{\\infty}\\frac{((x-1)+(r+1)-1)!}{(x-1)!((r+1)-1)!}q^{x-1} p^{r+1}=\\frac{q}{p}r=\\frac{0.4}{0.6}5=10\/3"
Since "mode(X)=2<E(X)=10\/3", the probability distribution is skewed to the left.
Answer. x=2, the probability distribution is skewed to the left.
Comments
Leave a comment