Question #203586

For a given discrete non-negative random variable, 𝑝𝑥 = 𝑃(𝑋 = 𝑥). Find 𝑥 such that 𝑝𝑥 > 𝑝𝑥+1, for the following distributions. a. 𝑋 is a binomial distribution with 𝑛 = 16 and 𝑝 = 0.5 b. 𝑋 is a Poisson distribution with 𝜆 = 8 c. 𝑋 is a Negative Binomial with 𝑟 = 5 and 𝑝 = 0.6 State the value of 𝑥 in the above sections. Verify whether the distributions are skewed for each section.


1
Expert's answer
2021-09-20T05:00:42-0400

(a) 𝑋 is a binomial distribution with 𝑛 = 16 and 𝑝 = 0.5.

px=P(X=x)=n!x!(nx)!pxqnxp_x=P(X=x)=\frac{n!}{x!(n-x)!}p^xq^{n-x}

px+1px=(n!(x+1)!(nx1)!px+1qnx1)/(n!x!(nx)!pxqnx)=nxx+1pq1\frac{p_{x+1}}{p_x}=\left(\frac{n!}{(x+1)!(n-x-1)!}p^{x+1}q^{n-x-1}\right) /\left( \frac{n!}{x!(n-x)!}p^xq^{n-x}\right)=\frac{n-x}{x+1}\frac{p}{q}\leq 1

p(nx)q(x+1)p(n-x)\leq q(x+1)

pnqx(p+q)=xpn-q\leq x(p+q)=x

pnq=0.5160.5=7.5pn-q=0.5\cdot16-0.5=7.5

The minimal integer x7.5x\geq 7.5 is 8.

Since P(X=nx)=n!x!(nx)!0.5x0.5nx=n!2nx!(nx)!=P(X=x)P(X=n-x)=\frac{n!}{x!(n-x)!}0.5^x0.5^{n-x}=\frac{n!2^{-n}}{x!(n-x)!}=P(X=x), any binomial distribution with p=0.5p=0.5 is symmetric, hence, it is not skewed.

Answer. x=8


(b) 𝑋 is a Poisson distribution with 𝜆 = 8.

px=P(X=x)=λxx!eλp_x=P(X=x)=\frac{\lambda^{x}}{x!}e^{-\lambda}

px+1px=(λx+1(x+1)!eλ)/(λxx!eλ)=λx+11\frac{p_{x+1}}{p_x}=\left(\frac{\lambda^{x+1}}{(x+1)!}e^{-\lambda}\right) /\left(\frac{\lambda^{x}}{x!}e^{-\lambda}\right)=\frac{\lambda}{x+1}\leq 1

xλ1=81=7x\geq \lambda-1=8-1=7

The minimal integer x7x\geq 7 is 7, this means that the mode of X is equal to 7.

E(X)=x=0xP(X=x)=x=0xλxx!eλ=E(X)=\sum\limits_{x=0}^{\infty}xP(X=x)=\sum\limits_{x=0}^{\infty}x\frac{\lambda^{x}}{x!}e^{-\lambda}=

=λeλx=1λx1(x1)!=λeλeλ=λ=8=\lambda e^{-\lambda}\sum\limits_{x=1}^{\infty}\frac{\lambda^{x-1}}{(x-1)!}=\lambda e^{-\lambda}e^{\lambda}=\lambda=8

Since mode(X)=7<E(X)=8mode(X)=7<E(X)=8, the probability distribution is skewed to the left.

Answer. x=8, the probability distribution is skewed to the left.


(c) 𝑋 is a Negative Binomial with 𝑟 = 5 and 𝑝 = 0.6

px=P(X=x)=(x+r1)!x!(r1)!qxprp_x=P(X=x)=\frac{(x+r-1)!}{x!(r-1)!}q^x p^r

px+1px=((x+r)!(x+1)!(r1)!qx+1pr)/((x+r1)!x!(r1)!qxpr)=x+rx+1q1\frac{p_{x+1}}{p_x}=\left(\frac{(x+r)!}{(x+1)!(r-1)!}q^{x+1} p^r\right) /\left(\frac{(x+r-1)!}{x!(r-1)!}q^x p^r\right)=\frac{x+r}{x+1}q\leq1

qx+qrx+1qx+qr\leq x+1

qr1pxqr-1\leq px

x(qr1)/p=(0.451)/0.6=5/3x\geq (qr-1)/p=(0.4\cdot 5-1)/0.6=5/3

The minimal integer x5/3x\geq 5/3 is 2.

E(X)=x=0xP(X=x)=x=0x(x+r1)!x!(r1)!qxpr=E(X)=\sum\limits_{x=0}^{\infty}xP(X=x)=\sum\limits_{x=0}^{\infty}x\frac{(x+r-1)!}{x!(r-1)!}q^x p^r=

=qprx=1((x1)+(r+1)1)!(x1)!((r+1)1)!qx1pr+1=qpr=0.40.65=10/3=\frac{q}{p}r\sum\limits_{x=1}^{\infty}\frac{((x-1)+(r+1)-1)!}{(x-1)!((r+1)-1)!}q^{x-1} p^{r+1}=\frac{q}{p}r=\frac{0.4}{0.6}5=10/3

Since mode(X)=2<E(X)=10/3mode(X)=2<E(X)=10/3, the probability distribution is skewed to the left.

Answer. x=2, the probability distribution is skewed to the left.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS