A normal distribution has μ = 80 and σ = 10. What is the probability of randomly selecting between the mean and a score of 50
z2=x2−μσ==80−8010=0z_2=\frac{x_2-\mu}{\sigma}==\frac{80-80}{10}=0z2=σx2−μ==1080−80=0
z1=x1−μσ=50−8010=−3.00z_1=\frac{x_1-\mu}{\sigma}=\frac{50-80}{10}=-3.00z1=σx1−μ=1050−80=−3.00
P(z<0)=0.5P(z<0)=0.5P(z<0)=0.5
P(z<−3.00)=0.00135P(z<-3.00)=0.00135P(z<−3.00)=0.00135
P(50<x<80)=P(z<0)−P(z<−3.00)=0.5−0.00135=0.49865P(50<x<80)=P(z<0)-P(z<-3.00)=0.5-0.00135=0.49865P(50<x<80)=P(z<0)−P(z<−3.00)=0.5−0.00135=0.49865
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments