(a)From the given information, the probability density function is,
f(y)=βe−βy,y>0,β>0.
Consider, the likelihood function,
L(y)=∏i=1nf(y)=f(y1)∗f(y2)∗.....∗f(yn)=βe−βy1∗βe−βy2∗............∗βe−βyn =βne−β∑yi
Consider, ln on both sides
lnL(y)=ln[βne−β∑yi]=nlnβ−β∑yi
Therefore,
dβdlnL(y)=0βn−∑Yi=0βn=∑Yiβˆ=y1
b)∑Yi=25,∑Yi2=50,n=50Therefore,βˆ=y1=50251=2
(c)null hypothesis that β =1against the alternative hypothesis that β ≠1at 5% level of significance.
Null Hypothesis:
H0: β =1
Alternative Hypothesis:
H1: β ≠1
Consider, the likelihood ratio,
L(y)H1L(y)H0=βne−β∑yi1ne−1∑yi=(β1)ne(β−1)∑ylnL(y)H1L(y)H0=nln(β1)+(β−1)∑y
Critical region is,
lnL(y)H1L(y)H0≤cnln(β1)+(β−1)∑y≤c(β−1)∑y≤c−nln(β1)∑y≤(β−1)c−nln(β1)∑y≤c′,(β−1)c−nln(β1)=c′
Thus, reject the null hypothesis if, ∑y≤c′
Comments