Question #201200

A random sampleY1 , Y 2 , ⋯,Yn is drawn from a distribution whose probability density function is given by: f (Y ) = βe − βY , Y  0 & β > 0 a). Obtain the maximum likelihood estimator (MLE) of β. (3 points) 1Econometrics- Assignment I b). Given that ∑ n Y i = 25 , ∑n Yi 2 = 50 , n = 50 calculate the maximum likelihood i =1 i =1 estimate of β. (3 point) c). Using the same data as in part (b), test the null hypothesis that β =1against the alternative hypothesis that β ≠1at 5% level of significance


1
Expert's answer
2021-07-05T06:43:18-0400

(a)From the given information, the probability density function is,

f(y)=βeβy,y>0,β>0.f(y)=βe^{−βy}, y>0, β>0 .

Consider, the likelihood function,

L(y)=i=1nf(y)=f(y1)f(y2).....f(yn)=βeβy1βeβy2............βeβyn =βneβyiL(y)=∏^{n}_{i=1}f(y) \\ =f(y1)*f(y2)*.....*f(y_n) \\ =βe^{−βy1}*βe^{−βy2}*............*βe^{−βy_n } \\\ =β^{n}e^{−β}∑yi

Consider, ln on both sides

lnL(y)=ln[βneβyi]=nlnββyilnL(y)=ln[β^{n}e^{−β}∑y_i] \\ =nlnβ−β∑yi

Therefore,

dlnL(y)dβ=0nβYi=0nβ=Yiβˆ=1y\frac{dlnL(y)}{dβ}=0\\\frac{n}{β}−∑Yi=0 \\ \frac{ n}{β}=∑Yi \\ βˆ=\frac{1}{y}


b)Yi=25,Yi2=50,n=50Therefore,βˆ=1y=12550=2b)\\ ∑ Y i = 25 , ∑ Yi^2= 50 , n = 50 \\ Therefore,\\ βˆ=\frac{1}{y}\\=\frac{1}{\frac{25}{50}} \\ =2


(c)null hypothesis that β =1against the alternative hypothesis that β ≠1at 5% level of significance.

Null Hypothesis:

H0: β =1

Alternative Hypothesis:

H1: β ≠1

Consider, the likelihood ratio,

L(y)H0L(y)H1=1ne1yiβneβyi=(1β)ne(β1)ylnL(y)H0L(y)H1=nln(1β)+(β1)y\frac{L(y )H_0}{L(y)H_1}=\frac{1^{n}e−1∑y_i}{β^{n}e^{−β}∑y_i }\\ =(\frac{1}{β})^{n}e^{(β−1)∑y}\\ln\frac{L(y )H_0}{L(y)H_1}=nln(\frac{1}{β})+(β−1)∑y

Critical region is,

lnL(y)H0L(y)H1cnln(1β)+(β1)yc(β1)ycnln(1β)ycnln(1β)(β1)yc,cnln(1β)(β1)=cln\frac{L(y )_{H_0}}{L(y)_{H_1}}≤c\\nln(\frac{1}{β})+(β−1)∑y≤c\\(β−1)∑y≤c−nln(\frac{1}{β}) \\ ∑y≤\frac{c−nln(\frac{1}{β})}{(β−1) }\\ ∑y≤c',\frac{c−nln(\frac{1}{β})}{(β−1)}=c'

Thus, reject the null hypothesis if, yc∑y≤c'  



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS