Question #201174

A pair of fair dice is tossed one time. What is the probability that ⦁ The sum of two faces is a prime number? ⦁ The sum of two faces is more than 9? ⦁ The sum of two faces is between 5 and 9? ⦁ The sum of two faces is at most 6? ⦁ The sum of two faces is at least 8?


1
Expert's answer
2021-06-01T03:44:33-0400


123456123456723456783456789456789105678910116789101112\def\arraystretch{1.5} \begin{array}{c:c:c} & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hdashline 2 & 3 & 4 & 5 & 6 & 7 & 8\\ \hdashline 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hdashline 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hdashline 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \hdashline 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hdashline \end{array}

1.

Prime numbers: 2,3,5,7,112,3,5,7,11

P(sum is prime)=1+2+4+6+236=512P(sum\ is\ prime)=\dfrac{1+2+4+6+2}{36}=\dfrac{5}{12}



2.


P(sum>9)=3+2+136=16P(sum>9)=\dfrac{3+2+1}{36}=\dfrac{1}{6}

3.


P(5sum9)=4+5+6+5+436=23P(5\leq sum\leq 9)=\dfrac{4+5+6+5+4}{36}=\dfrac{2}{3}

P(5<sum<9)=5+6+536=49P(5< sum<9)=\dfrac{5+6+5}{36}=\dfrac{4}{9}

4.


P(sum6)=1+2+3+4+536=512P( sum\leq 6)=\dfrac{1+2+3+4+5}{36}=\dfrac{5}{12}

5.

P(sum8)=5+4+3+2+136=512P(sum\geq 8)=\dfrac{5+4+3+2+1}{36}=\dfrac{5}{12}





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS