1. Given the normally distributed variable X with mean 18 and variance 6.25. find
a) P(X is less than15)
b) THE VALUE OF K SUCH THAT P(X is less than k) = 0.2236
c) P(17 less than X less than 21)
"The \\space random\\space variable \\space X \\space follows \\space normal\\ distribution \\space\\\\ with \\space a \\space mean\\space \\mu \\space =18 \\space ,variance \\space =6.25 \\space and \\space the \\space standard\\space deviation \\space of \\space \\sigma=2.5\\\\ \n(a)\\\\ \n\nLets \\space find \\space P(X<15)\\\\\nFirst, \\space we \\space we\\space have \\space to \\space find\\space z\\space value \\space corresponding \\space to \\space x=15\\\\\nz=\\frac{x-\\mu}{\\sigma}=\\frac{15-18}{2.5}=-1.2\\\\\nhence\\\\\nP(X<15)=P(Z<-1.2)=0.1151\\\\\nput \\space value \\space from\\space z \\space table\\\\\n(b)\\\\\nLets \\space find \\space the \\space value\\space of \\space k\\space such\\space that \\space P(X)=0.2236\\\\\nP(z<\\frac{k-\\mu}{\\sigma})=0.2236\\\\\nP(z<-0.76)=0.2236\\\\\nput \\space value \\space from\\space z \\space table\\\\\nhence\\\\\n\\frac{k-\\mu}{\\sigma}=-0.76\\\\\nk=-0.76\\sigma +\\mu\\\\\nk=-0.76\u00d72.5 +18\\\\\nk=16.1\\\\\n(c)\n\\\\\nLets\\space find\\space P(17<X<21)\\\\\nfirst, \\space we \\space have \\space to \\space find\\space z\\space values\\space corresponding \\space to \\space x_1=17 \\space and \\space x_2=21\\\\\nz_1=\\frac{x_1-\\mu}{\\sigma}=\\frac{17-18}{2.5}=-0.4\\\\\nz_2=\\frac{x_2-\\mu}{\\sigma}=\\frac{21-18}{2.5}=1.2\\\\\nhence\\\\\nP(17<X<21)=P(-0.4<Z<1.2)\\\\\n=P(Z<1.2)-P(Z<-0.4)\nput \\space value \\space from\\space z \\space table\\\\\n=0.8849-0.3446\n=0.5403"
Comments
Leave a comment