Calculate the first four moments about the mean from the following frequency distribution.
Also calculate the Moment Ratios b1 and b2.
Groups
2------4
4-------6
6------8
8-----10
10----12
12----14
14----16
16----18
18----20
Frequency
18
24
47
80
102
66
40
21
15
The first central moment m1 is always zero.
The second central moment is:
"m_2=\\frac{1}{N}\\sum f_i(x_i-\\overline{x})^2"
where fi is frequency,
"x_i=\\{3,5,7,9,11,13,15,17,19\\}"
The third central moment is
"m_3=\\frac{1}{N}\\sum f_i(x_i-\\overline{x})^3"
The fourth central moment is
"m_3=\\frac{1}{N}\\sum f_i(x_i-\\overline{x})^4"
Using online calculator vrcacademy.com, we get:
Number of observations:
"N=413"
Mean of X values:
"\\overline{x}=10.76"
"m_2=13.76"
"m_3=3.17"
"m_4=526.43"
Moment Ratios:
skewness:
"b_1=\\frac{1}{N\\sigma^3}\\sum (x_i-\\overline{x})^3"
kurtosis
"b_2=\\frac{1}{N\\sigma^4}\\sum (x_i-\\overline{x})^4"
where "\\sigma" is standard deviation.
Using online calculator www.socscistatistics.com, we get:
"b_1=0"
"b_2=-1.2"
Comments
Leave a comment