Question #200483

Show that Tn=X+1/n+1 is a consistent estimator of the parameter theta of a binomial population


1
Expert's answer
2021-06-02T12:49:03-0400

Tn=x+1n+1T_n=\frac{x+1}{n+1}

An estimator TnT_n  of parameter θ is consistent if it converges in probability:

limnPr(Tnθ>ε)=0\displaystyle{\lim_{n\to \infin}}Pr(|T_n-\theta|>\varepsilon)=0

for all ε>0\varepsilon>0

For a binomial population: θ=x/n\theta=x/n - the proportion of successes.

Then:

limn(Tnθ)=limn(x+1n+1xn)=0\displaystyle{\lim_{n\to \infin}}(T_n-\theta)=\displaystyle{\lim_{n\to \infin}}(\frac{x+1}{n+1}-\frac{x}{n})=0


If

(x+1n+1xn)=0(\frac{x+1}{n+1}-\frac{x}{n})=0

then:

Pr(x+1n+1xn>ε)=0Pr(|\frac{x+1}{n+1}-\frac{x}{n}|>\varepsilon)=0

because ε>0\varepsilon>0 .

So:

limnPr(x+1n+1xn>ε)=0\displaystyle{\lim_{n\to \infin}}Pr(|\frac{x+1}{n+1}-\frac{x}{n}|>\varepsilon)=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS