Show that Tn=X+1/n+1 is a consistent estimator of the parameter theta of a binomial population
"T_n=\\frac{x+1}{n+1}"
An estimator "T_n" of parameter θ is consistent if it converges in probability:
"\\displaystyle{\\lim_{n\\to \\infin}}Pr(|T_n-\\theta|>\\varepsilon)=0"
for all "\\varepsilon>0"
For a binomial population: "\\theta=x\/n" - the proportion of successes.
Then:
"\\displaystyle{\\lim_{n\\to \\infin}}(T_n-\\theta)=\\displaystyle{\\lim_{n\\to \\infin}}(\\frac{x+1}{n+1}-\\frac{x}{n})=0"
If
"(\\frac{x+1}{n+1}-\\frac{x}{n})=0"
then:
"Pr(|\\frac{x+1}{n+1}-\\frac{x}{n}|>\\varepsilon)=0"
because "\\varepsilon>0" .
So:
"\\displaystyle{\\lim_{n\\to \\infin}}Pr(|\\frac{x+1}{n+1}-\\frac{x}{n}|>\\varepsilon)=0"
Comments
Leave a comment