A random sample of size n is drawn from a uniform population over (θ-1/3,θ+1/3),Obtain maximum likelihood estimator ofθ.
likelihood function for a uniform distribution:
"L(\\theta)=\\Pi^n_{i=1}f(x_i;a,b)=\\Pi^n_{i=1}\\frac{1}{(b-a)^n}=\\Pi^n_{i=1}\\frac{1}{(b-a)^n}=\\Pi^n_{i=1}\\frac{1}{(\\theta +1\/3-\\theta +1\/3)^n}=\\Pi^n_{i=1}\\frac{1}{(2\/3)^n}"
log-likelihood function:
"l(\\theta)=-nlog(2\/3)"
log-likelihood function does not depend on "\\theta" , so MLE for "\\theta" does not exist
Comments
Leave a comment