3) Let X=lifetime, X∼N(μ,σ2)
Given μ=1200 h,σ=250 h.
a.
P(900<X<1300)=P(X<1300)−P(X≤900)
=P(Z<2501300−1200)−P(Z≤250900−1200)
=P(Z<0.4)−P(Z≤−1.2)
≈0.6554217−0.1150697≈0.540352
b.
P(X>1400)=1−P(X≤1400)
=1−P(Z≤2501400−1200)
=1−P(Z≤0.8)≈0.211855
4) Let X∼N(μ,σ2)
Given μ=80,σ2=100.
a.
P(X>60)=1−P(X≤60)
=1−P(Z≤1060−80)
=1−P(Z≤−2)≈0.977250
b.
P(72<X<82)=P(X<82)−P(X≤72)
=P(Z<1082−80)−P(Z≤1072−80)
=P(Z<0.2)−P(Z≤−0.8)
≈0.5792597−0.2118554≈0.367404
c.
P(X<55)=P(Z<1055−80)
=P(Z<−2.5)≈0.006210
6) Let X=demand, X∼N(μ,σ2)
Given μ=1200 pounds,σ=100 pounds.
a.
P(X>1000)=1−P(X≤1000)
=1−P(Z≤1001000−1200)
=1−P(Z≤−2)≈0.977250
b.
P(1100<X<1300)=P(X<1300)−P(X≤1100)
=P(Z<1001300−1200)−P(Z≤1001100−1200)
=P(Z<1)−P(Z≤−1)
≈0.8413447−0.1586553≈0.682689
Comments