Question #197377

Given : n = 6, ∑(x − 18.5) = −3, ∑(y − 50) = 20, ∑(x − 18.5)(y − 50) = −120,

∑(x − 18.5)

2 = 19, ∑(y − 50)

2 = 850 . Calculate coefficient of correlation.


1
Expert's answer
2021-05-24T16:25:59-0400

Given


n=6,xˉ=18.5,yˉ=50n=6, \bar{x}=18.5, \bar{y}=50

Sxx=(xxˉ)2=19S_{xx}=\sum(x-\bar{x})^2=19

Syy=(yyˉ)2=850S_{yy}=\sum(y-\bar{y})^2=850

Sxy=(xxˉ)(yyˉ)=120S_{xy}=\sum(x-\bar{x})(y-\bar{y})=-120

Coefficient of correlation


r=SxySxxSyyr=\dfrac{S_{xy}}{\sqrt{S_{xx}}\sqrt{S_{yy}}}

=120198500.944267=\dfrac{-120}{\sqrt{19}\sqrt{850}}\approx-0.944267

r<0,0.7<r1r<0, 0.7<|r|\leq1

Strong negative correlation.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS