Question #195909

A population consists of the five measurements 2, 6, 8, 0, and 1 with a sample size 4. Find the variance of the sample means


1
Expert's answer
2021-05-21T02:18:13-0400

Mean



μ=2+6+8+0+15=3.4\mu=\dfrac{2+6+8+0+1}{5}=3.4

Variance


σ2=15((23.4)2+(62.4)2+(83.4)2\sigma^2=\dfrac{1}{5}\big((2-3.4)^2+(6-2.4)^2+(8-3.4)^2(03.4)2+(13.4)2)=9.44(0-3.4)^2+(1-3.4)^2\big)=9.44


Standard deviation



σ=σ2=9.443.0725\sigma=\sqrt{\sigma^2}=\sqrt{9.44}\approx3.0725




 We have population values 2,6,8,0,12,6,8,0,1 population size N=5N=5 and sample size n=4.n=4. Thus, the number of possible samples which can be drawn without replacement is


(Nn)=(54)=5\dbinom{N}{n}=\dbinom{5}{4}=5SampleSampleSample meanNo.values(Xˉ)12,6,8,0422,6,8,14.2532,6,0,12.2542,8,0,12.7556,8,0,13.75\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & Sample & Sample \ mean \\ No. & values & (\bar{X}) \\ \hline 1 & 2,6, 8, 0 & 4 \\ \hdashline 2 & 2,6,8,1 & 4.25 \\ \hdashline 3 & 2,6,0,1 & 2.25 \\ \hdashline 4 & 2,8,0,1 & 2.75 \\ \hdashline 5 & 6,8,0,1 & 3.75 \\ \hline \end{array}





Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)9/411/59/2081/8011/411/511/20121/8015/411/515/20225/80411/516/20256/8017/411/517/20289/80Total5168/20972/80\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 9/4 & 1& 1/5 & 9/20 & 81/80 \\ \hdashline 11/4 & 1 & 1/5 & 11/20 & 121/80 \\ \hdashline 15/4 & 1 & 1/5 & 15/20 & 225/80 \\ \hdashline 4 & 1 & 1/5 & 16/20 & 256/80 \\ \hdashline 17/4 & 1& 1/5 & 17/20 & 289/80 \\ \hdashline Total & 5 & 1 & 68/20 & 972/80 \\ \hline \end{array}




E(Xˉ)=Xˉf(Xˉ)=6820=3.4E(\bar{X})=\sum\bar{X}f(\bar{X})=\dfrac{68}{20}=3.4

The mean of the sampling distribution of the sample means is equal to the

the mean of the population.



E(Xˉ)=3.4=μE(\bar{X})=3.4=\mu




Var(Xˉ)=Xˉ2f(Xˉ)(Xˉf(Xˉ))2Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2




=97280(6820)2=472800=59100=0.59=\dfrac{972}{80}-(\dfrac{68}{20})^2=\dfrac{472}{800}=\dfrac{59}{100}=0.59




Var(Xˉ)=591000.7681\sqrt{Var(\bar{X})}=\sqrt{\dfrac{59}{100}}\approx0.7681

Verification:


Var(Xˉ)=σ2n(NnN1)=9.444(5451)Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{9.44}{4}(\dfrac{5-4}{5-1})=0.59,True=0.59, True




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS