Mean
μ = 2 + 6 + 8 + 0 + 1 5 = 3.4 \mu=\dfrac{2+6+8+0+1}{5}=3.4 μ = 5 2 + 6 + 8 + 0 + 1 = 3.4 Variance
σ 2 = 1 5 ( ( 2 − 3.4 ) 2 + ( 6 − 2.4 ) 2 + ( 8 − 3.4 ) 2 \sigma^2=\dfrac{1}{5}\big((2-3.4)^2+(6-2.4)^2+(8-3.4)^2 σ 2 = 5 1 ( ( 2 − 3.4 ) 2 + ( 6 − 2.4 ) 2 + ( 8 − 3.4 ) 2 ( 0 − 3.4 ) 2 + ( 1 − 3.4 ) 2 ) = 9.44 (0-3.4)^2+(1-3.4)^2\big)=9.44 ( 0 − 3.4 ) 2 + ( 1 − 3.4 ) 2 ) = 9.44
Standard deviation
σ = σ 2 = 9.44 ≈ 3.0725 \sigma=\sqrt{\sigma^2}=\sqrt{9.44}\approx3.0725 σ = σ 2 = 9.44 ≈ 3.0725
We have population values 2 , 6 , 8 , 0 , 1 2,6,8,0,1 2 , 6 , 8 , 0 , 1 population size N = 5 N=5 N = 5 and sample size n = 4. n=4. n = 4. Thus, the number of possible samples which can be drawn without replacement is
( N n ) = ( 5 4 ) = 5 \dbinom{N}{n}=\dbinom{5}{4}=5 ( n N ) = ( 4 5 ) = 5 S a m p l e S a m p l e S a m p l e m e a n N o . v a l u e s ( X ˉ ) 1 2 , 6 , 8 , 0 4 2 2 , 6 , 8 , 1 4.25 3 2 , 6 , 0 , 1 2.25 4 2 , 8 , 0 , 1 2.75 5 6 , 8 , 0 , 1 3.75 \def\arraystretch{1.5}
\begin{array}{c:c:c}
Sample & Sample & Sample \ mean \\
No. & values & (\bar{X}) \\ \hline
1 & 2,6, 8, 0 & 4 \\
\hdashline
2 & 2,6,8,1 & 4.25 \\
\hdashline
3 & 2,6,0,1 & 2.25 \\
\hdashline
4 & 2,8,0,1 & 2.75 \\
\hdashline
5 & 6,8,0,1 & 3.75 \\
\hline
\end{array} S am pl e N o . 1 2 3 4 5 S am pl e v a l u es 2 , 6 , 8 , 0 2 , 6 , 8 , 1 2 , 6 , 0 , 1 2 , 8 , 0 , 1 6 , 8 , 0 , 1 S am pl e m e an ( X ˉ ) 4 4.25 2.25 2.75 3.75
X ˉ f f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 9 / 4 1 1 / 5 9 / 20 81 / 80 11 / 4 1 1 / 5 11 / 20 121 / 80 15 / 4 1 1 / 5 15 / 20 225 / 80 4 1 1 / 5 16 / 20 256 / 80 17 / 4 1 1 / 5 17 / 20 289 / 80 T o t a l 5 1 68 / 20 972 / 80 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline
9/4 & 1& 1/5 & 9/20 & 81/80 \\
\hdashline
11/4 & 1 & 1/5 & 11/20 & 121/80 \\
\hdashline
15/4 & 1 & 1/5 & 15/20 & 225/80 \\
\hdashline
4 & 1 & 1/5 & 16/20 & 256/80 \\
\hdashline
17/4 & 1& 1/5 & 17/20 & 289/80 \\
\hdashline
Total & 5 & 1 & 68/20 & 972/80 \\ \hline
\end{array} X ˉ 9/4 11/4 15/4 4 17/4 T o t a l f 1 1 1 1 1 5 f ( X ˉ ) 1/5 1/5 1/5 1/5 1/5 1 X ˉ f ( X ˉ ) 9/20 11/20 15/20 16/20 17/20 68/20 X ˉ 2 f ( X ˉ ) 81/80 121/80 225/80 256/80 289/80 972/80
E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 68 20 = 3.4 E(\bar{X})=\sum\bar{X}f(\bar{X})=\dfrac{68}{20}=3.4 E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 20 68 = 3.4 The mean of the sampling distribution of the sample means is equal to the
the mean of the population.
E ( X ˉ ) = 3.4 = μ E(\bar{X})=3.4=\mu E ( X ˉ ) = 3.4 = μ
V a r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2 Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2 Va r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2
= 972 80 − ( 68 20 ) 2 = 472 800 = 59 100 = 0.59 =\dfrac{972}{80}-(\dfrac{68}{20})^2=\dfrac{472}{800}=\dfrac{59}{100}=0.59 = 80 972 − ( 20 68 ) 2 = 800 472 = 100 59 = 0.59
V a r ( X ˉ ) = 59 100 ≈ 0.7681 \sqrt{Var(\bar{X})}=\sqrt{\dfrac{59}{100}}\approx0.7681 Va r ( X ˉ ) = 100 59 ≈ 0.7681 Verification:
V a r ( X ˉ ) = σ 2 n ( N − n N − 1 ) = 9.44 4 ( 5 − 4 5 − 1 ) Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{9.44}{4}(\dfrac{5-4}{5-1}) Va r ( X ˉ ) = n σ 2 ( N − 1 N − n ) = 4 9.44 ( 5 − 1 5 − 4 ) = 0.59 , T r u e =0.59, True = 0.59 , T r u e
Comments