Question #195784

 The marks of 500 candidates in an examination are normally distributed 

with mean of 45 marks and a standard deviation of 20 marks. 

a) Given that the pass mark is 41, estimate the number of candidates 

who passed the examination.

b) If 5% of the candidates obtained a distinction by scoring x marks or 

more, estimate the value of x.


1
Expert's answer
2021-05-20T14:58:12-0400

Let Y=Y= the mark in an examination: YN(μ,σ2)Y\sim N(\mu, \sigma^2)

Given μ=45,σ=20.\mu=45, \sigma=20.


a)


P(Y41)=1P(Y<41)P(Y\geq41)=1-P(Y<41)

=1P(Z<414520)=1P(Z<0.2)=1-P(Z<\dfrac{41-45}{20})=1-P(Z<-0.2)

0.579260\approx0.579260

500(0.579260)=289.63500(0.579260)=289.63

289 candidates passed the examination.


b)


P(Yx)=1P(Y<x)P(Y\geq x)=1-P(Y<x)

=1P(Z<x4520)=0.05=1-P(Z<\dfrac{x-45}{20})=0.05

P(Z<x4520)=0.95P(Z<\dfrac{x-45}{20})=0.95

x4520=1.6449\dfrac{x-45}{20}=1.6449


x=78x=78


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS