Question #194814

Suppose X ~ N(3 , 4). If sample size = 100, P(∑ Xi > 250) = ?. Draw

a figure.


1
Expert's answer
2021-05-19T08:06:33-0400

Suppose XN(μ,σ2).X\sim N(\mu, \sigma^2).

By the Central Limit Theorem for the random samples we take from the population, we can compute the mean of the sample means μxˉ=μ\mu_{\bar{x}}=\mu and the standard deviation of the sample means σxˉ=σ/n.\sigma_{\bar{x}}=\sigma/\sqrt{n}.

Then xˉN(μ,σ2/n).\bar{x}\sim N(\mu, \sigma^2/n).


Given μ=3,σ2=4,n=100.\mu=3, \sigma^2=4, n=100.


xˉN(3,22/100).\bar{x}\sim N(3, 2^2/100).



P(Xi>250)=P(xˉ>250100)=P(xˉ>2.5)P(\sum X_i>250)=P(\bar{x}>\dfrac{250}{100})=P(\bar{x}>2.5)

=1P(xˉ2.5)=1P(Z2.532/100)=1-P(\bar{x}\leq2.5)=1-P(Z\leq\dfrac{2.5-3}{2/\sqrt{100}})

=1P(Z2.532/100)=1P(Z2.5)=1-P(Z\leq\dfrac{2.5-3}{2/\sqrt{100}})=1-P(Z\leq-2.5)

0.9938\approx0.9938




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS