Question #194337

Samples of three cards are drawn at random from a population of eight cards numbered from 1 to 8.

A. How many possible samples can be drawn?

B. Construct the sampling distribution of sample means.


1
Expert's answer
2021-05-18T14:09:44-0400

A. As order is of no account, this a combination problem


(83)=8!3!(83)!=8(7)(6)1(2)(3)=56\dbinom{8}{3}=\dfrac{8!}{3!(8-3)!}=\dfrac{8(7)(6)}{1(2)(3)}=56

56 possible samples can be drawn.


B.


SamplexˉProbability1,2,321/561,2,47/31/561,2,58/31/561,2,631/561,2,710/31/561,2,811/31/561,3,48/31/561,3,531/561,3,610/31/561,3,711/31/561,3,841/561,4,510/31/561,4,611/31/561,4,741/561,4,813/31/561,5,641/561,5,713/31/561,5,814/31/561,6,714/31/561,6,851/561,7,816/31/562,3,431/562,3,510/31/562,3,611/31/562,3,741/562,3,813/31/562,4,511/31/562,4,641/562,4,713/31/562,4,814/31/562,5,613/31/562,5,714/31/562,5,851/562,6,751/562,6,816/31/562,7,817/31/563,4,541/563,4,613/31/563,4,714/31/563,4,851/563,5,614/31/563,5,751/563,5,816/31/563,6,716/31/563,6,817/31/563,7,861/564,5,651/564,5,716/31/564,5,817/31/564,6,717/31/564,6,861/564,7,819/31/565,6,761/565,6,819/31/565,7,820/31/566,7,871/56\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & \bar{x} & Probability \\ \hline 1,2,3 & 2 & 1/56 \\ 1,2,4 & 7/3 & 1/56 \\ 1,2,5 & 8/3 & 1/56 \\ 1,2,6 & 3 & 1/56 \\ 1,2,7 & 10/3 & 1/56 \\ 1,2,8 & 11/3 & 1/56 \\ 1,3,4 & 8/3 & 1/56 \\ 1,3,5 & 3 & 1/56 \\ 1,3,6 & 10/3 & 1/56 \\ 1,3,7 & 11/3 & 1/56 \\ 1,3,8 & 4 & 1/56 \\ 1,4,5 & 10/3 & 1/56 \\ 1,4,6 & 11/3 & 1/56 \\ 1,4,7 & 4 & 1/56 \\ 1,4,8 & 13/3 & 1/56 \\ 1,5,6 & 4 & 1/56 \\ 1,5,7 & 13/3 & 1/56 \\ 1,5,8 & 14/3 & 1/56 \\ 1,6,7 & 14/3 & 1/56 \\ 1,6,8 & 5 & 1/56 \\ 1,7,8 & 16/3 & 1/56 \\ 2,3,4 & 3 & 1/56 \\ 2,3,5 & 10/3 & 1/56 \\ 2,3,6 & 11/3 & 1/56 \\ 2,3,7 & 4 & 1/56 \\ 2,3,8 & 13/3 & 1/56 \\ 2,4,5 & 11/3 & 1/56 \\ 2,4,6 & 4 & 1/56 \\ 2,4,7 & 13/3 & 1/56 \\ 2,4,8 & 14/3 & 1/56 \\ 2,5,6 & 13/3 & 1/56 \\ 2,5,7 & 14/3 & 1/56 \\ 2,5,8 & 5 & 1/56 \\ 2,6,7 & 5 & 1/56 \\ 2,6,8 & 16/3 & 1/56 \\ 2,7,8 & 17/3 & 1/56 \\ 3,4,5 & 4 & 1/56 \\ 3,4,6 & 13/3 & 1/56 \\ 3,4,7 & 14/3 & 1/56 \\ 3,4,8 & 5 & 1/56 \\ 3,5,6 & 14/3 & 1/56 \\ 3,5,7 & 5 & 1/56 \\ 3,5,8 & 16/3 & 1/56 \\ 3,6,7 & 16/3 & 1/56 \\ 3,6,8 & 17/3 & 1/56 \\ 3,7,8 & 6 & 1/56 \\ 4,5,6 & 5 & 1/56 \\ 4,5,7 & 16/3 & 1/56 \\ 4,5,8 & 17/3 & 1/56 \\ 4,6,7 & 17/3 & 1/56 \\ 4,6,8 & 6 & 1/56 \\ 4,7,8 & 19/3 & 1/56 \\ 5,6,7 & 6 & 1/56 \\ 5,6,8 & 19/3 & 1/56 \\ 5,7,8 & 20/3 & 1/56 \\ 6,7,8 & 7 & 1/56 \\ \end{array}

xˉp21/567/31/568/32/5633/5610/34/5611/35/5646/5613/36/5614/36/5656/5616/35/5617/34/5663/5619/32/5620/31/5671/56\def\arraystretch{1.5} \begin{array}{c:c} \bar{x} & p \\ \hline 2 & 1/56 \\ 7/3 & 1/56 \\ 8/3 & 2/56 \\ 3 & 3/56 \\ 10/3 & 4/56 \\ 11/3 & 5/56 \\ 4 & 6/56 \\ 13/3 & 6/56 \\ 14/3 & 6/56 \\ 5 & 6/56 \\ 16/3 & 5/56 \\ 17/3 & 4/56 \\ 6 & 3/56 \\ 19/3 & 2/56 \\ 20/3 & 1/56 \\ 7 & 1/56 \\ \end{array}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS