Given,
n = 100
Point estimate = sample proportion = p ^ = 0.53 \hat p = 0.53 p ^ = 0.53
1 − p ^ = 1 − 0.53 = 0.47 1-\hat p=1-0.53=0.47 1 − p ^ = 1 − 0.53 = 0.47
At 95% confidence level
α = 1 − 95 % α = 1 − 0.95 = 0.05 α / 2 = 0.025 Z α / 2 = Z 0.025 = 1.96 \alpha =1-95\%\\\alpha=1-0.95=0.05\\\alpha/2=0.025\\Z_{\alpha/2}=Z_{0.025}=1.96 α = 1 − 95% α = 1 − 0.95 = 0.05 α /2 = 0.025 Z α /2 = Z 0.025 = 1.96
Margin of error = E = Z α / 2 p ^ ⋅ ( 1 − p ^ ) n E=Z_{\alpha/2}\sqrt{\dfrac{\hat p\cdot (1-\hat p)}{n}} E = Z α /2 n p ^ ⋅ ( 1 − p ^ )
E = 1.96 0.53 × 0.47 100 ⇒ E = 1.96 × 0.04991 ⇒ E = 0.0978 E= 1.96\sqrt{\dfrac{0.53\times 0.47}{100}}\\\Rightarrow E=1.96\times0.04991\\\Rightarrow E=0.0978 E = 1.96 100 0.53 × 0.47 ⇒ E = 1.96 × 0.04991 ⇒ E = 0.0978
Margin of error = 0.0978 \boxed{\text{Margin of error = 0.0978}} Margin of error = 0.0978
Comments