a population size N = 150 has μ = 8 and standard deviation of 5.4. What is the probability that a random size n=20 will have a mean of 9.5 above
Given,
Mean of population "\\mu=8"
Standard deviation "\\sigma = 5.4"
Using
"P(\\bar X >9.5)= \\dfrac{\\bar X-\\mu}{\\frac{\\sigma}{\\sqrt n}}"
"P( \\bar X>9.5)= \\dfrac{9.5-8}{\\frac{5.4}{\\sqrt{20}}}=\\dfrac{1.5}{1.20}=1.25"
So, "P(Z>1.25)=0.1056"
Hence, Probability P(Z>1.25)= 0.1056
Comments
Leave a comment