On average, 3 students per month cry in happiness. What is the probability that in any given month,
a) exactly 5 students will cry in happiness
b) fewer than 3 students will cry in happiness
c) at least 2 students will cry in happiness
Answers (Decimal Format; 4 decimal places)
Given, Average students cry in a month, "\\lambda=3"
Let X denote the number of students cry in happiness
"(i) P(X=5)=\\dfrac{e^{-\\lambda}.\\lambda^5}{5!}=\\dfrac{e^{-3}3^5}{5!}=0.1008"
"(ii) P(X<3)=P(X=0)+P(X=1)+P(X=2)"
"=\\dfrac{e^{-\\lambda}.\\lambda^1}{1!}+\\dfrac{e^{-\\lambda}.\\lambda^2}{!}+\\dfrac{e^{-\\lambda}.\\lambda^2}{2!}\\\\[9pt]=\\dfrac{e^{-3}3^0}{0!}+\\dfrac{e^{-3}3^1}{1!}+\\dfrac{e^{-3}.3^2}{2!}\\\\[9pt]=0.048978+0.14936+0.22404=0.4224"
"(iii) P(X\\ge 2)=1-P(X<2)=1-[P(X=0)+P(X=1)]"
"=1-[\\dfrac{e^{-\\lambda}\\lambda^0}{0!}+\\dfrac{e^{-\\lambda}\\lambda^1}{1!}]\n\n \\\\[9pt] =1-[0.048978+0.14936]\\\\[9pt]=1-0.198338=0.8016"
Comments
Leave a comment