The probability density function of a random variable X is f(x) = C|x|. Find C, and the value of x° such that Fx(x°) = 3/4, where F is the CDF.
The pdf is-
f(x)=Cx,0≤x≤2f(x)=Cx, 0\le x\le 2f(x)=Cx,0≤x≤2
0, othervise 0 , \text{ othervise }0, othervise
As we know that for pdfs-
∫−∞∞f(x)dx=1\int_{-\infty}^{\infty}f(x)dx=1∫−∞∞f(x)dx=1
∫02Cxdx=1\int_0^2Cxdx=1∫02Cxdx=1
Cx22∣02=1\dfrac{Cx^2}{2}|_0^2=12Cx2∣02=1
4C2=1⇒C=12\dfrac{4C}{2}=1\Rightarrow C=\dfrac{1}{2}24C=1⇒C=21
Also CDF is calculating by integrating the PDf-
FX(xo)=∫−∞xox2dxF_X(x^o)=\int_{-\infty}^{x^o}\dfrac{x}{2}dxFX(xo)=∫−∞xo2xdx
FX(xo)=∫0xox2dxF_X(x^o)=\int_{0}^{x^o}\dfrac{x}{2}dxFX(xo)=∫0xo2xdx
34=x24∣0xo⇒(xo)24=34⇒xo=3\dfrac{3}{4}=\dfrac{x^2}{4}|_0^{x^o}\Rightarrow \dfrac{(x^o)^2}{4}=\dfrac{3}{4}\Rightarrow x^o=\sqrt{3}43=4x2∣0xo⇒4(xo)2=43⇒xo=3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments