The pdf is-
f ( x ) = C x , 0 ≤ x ≤ 2 f(x)=Cx, 0\le x\le 2 f ( x ) = C x , 0 ≤ x ≤ 2
0 , othervise 0 , \text{ othervise } 0 , othervise
As we know that for pdfs-
∫ − ∞ ∞ f ( x ) d x = 1 \int_{-\infty}^{\infty}f(x)dx=1 ∫ − ∞ ∞ f ( x ) d x = 1
∫ 0 2 C x d x = 1 \int_0^2Cxdx=1 ∫ 0 2 C x d x = 1
C x 2 2 ∣ 0 2 = 1 \dfrac{Cx^2}{2}|_0^2=1 2 C x 2 ∣ 0 2 = 1
4 C 2 = 1 ⇒ C = 1 2 \dfrac{4C}{2}=1\Rightarrow C=\dfrac{1}{2} 2 4 C = 1 ⇒ C = 2 1
Also CDF is calculating by integrating the PDf-
F X ( x o ) = ∫ − ∞ x o x 2 d x F_X(x^o)=\int_{-\infty}^{x^o}\dfrac{x}{2}dx F X ( x o ) = ∫ − ∞ x o 2 x d x
F X ( x o ) = ∫ 0 x o x 2 d x F_X(x^o)=\int_{0}^{x^o}\dfrac{x}{2}dx F X ( x o ) = ∫ 0 x o 2 x d x
3 4 = x 2 4 ∣ 0 x o ⇒ ( x o ) 2 4 = 3 4 ⇒ x o = 3 \dfrac{3}{4}=\dfrac{x^2}{4}|_0^{x^o}\Rightarrow \dfrac{(x^o)^2}{4}=\dfrac{3}{4}\Rightarrow x^o=\sqrt{3} 4 3 = 4 x 2 ∣ 0 x o ⇒ 4 ( x o ) 2 = 4 3 ⇒ x o = 3
Comments