a. the mean of the population
μ = 2 + 3 + 7 + 8 + 10 5 = 6 \mu=\dfrac{2+3+7+8+10}{5}=6 μ = 5 2 + 3 + 7 + 8 + 10 = 6 the standard deviation of the population
σ 2 = ( 2 − 6 ) 2 + ( 3 − 6 ) 2 + ( 7 − 6 ) 2 + ( 8 − 6 ) 2 + ( 10 − 6 ) 2 5 \sigma^2=\dfrac{(2-6)^2+(3-6)^2+(7-6)^2+(8-6)^2+(10-6)^2}{5} σ 2 = 5 ( 2 − 6 ) 2 + ( 3 − 6 ) 2 + ( 7 − 6 ) 2 + ( 8 − 6 ) 2 + ( 10 − 6 ) 2 = 9.2 =9.2 = 9.2
σ = 9.2 = 3.033 \sigma=\sqrt{9.2}=3.033 σ = 9.2 = 3.033
b. There are ( 5 4 ) \dbinom{5}{4} ( 4 5 ) samples of size two which can be drawn without replacement:
( 5 4 ) = 5 ! 4 ! ( 5 − 4 ) ! = 5 \dbinom{5}{4}=\dfrac{5!}{4!(5-4)!}=5 ( 4 5 ) = 4 ! ( 5 − 4 )! 5 ! = 5 S a m p l e N o . S a m p l e v a l u e S a m p l e m e a n X ˉ 1 ( 2 , 3 , 7 , 8 ) 5 2 ( 2 , 3 , 7 , 10 ) 5.5 3 ( 2 , 3 , 8 , 10 ) 5.75 4 ( 2 , 7 , 8 , 10 ) 6.75 5 ( 3 , 7 , 8 , 10 ) 7 \def\arraystretch{1.5}
\begin{array}{c:c:c}
Sample\ No. & Sample\ value & Sample\ mean\ \bar{X} \\ \hline
1 & (2,3,7,8) & 5 \\
\hdashline
2 & (2,3,7,10) & 5.5 \\
\hdashline
3 & (2,3,8,10) & 5.75 \\
\hdashline
4 & (2,7,8,10) & 6.75 \\
\hdashline
5 & (3,7,8,10) & 7
\end{array} S am pl e N o . 1 2 3 4 5 S am pl e v a l u e ( 2 , 3 , 7 , 8 ) ( 2 , 3 , 7 , 10 ) ( 2 , 3 , 8 , 10 ) ( 2 , 7 , 8 , 10 ) ( 3 , 7 , 8 , 10 ) S am pl e m e an X ˉ 5 5.5 5.75 6.75 7 The sampling distribution of the sample mean X ˉ \bar{X} X ˉ and its mean and standard deviation are:
X ˉ f f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 5 1 0.2 1 5 5.5 1 0.2 1.1 6.05 5.75 1 0.2 1.15 6.6125 6.75 1 0.2 1.35 9.1125 7 1 0.2 1.4 9.8 T o t a l 5 1 6 36.575 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline
5 & 1 & 0.2 & 1 & 5 \\
\hdashline
5.5 & 1 & 0.2 & 1.1 & 6.05 \\
\hdashline
5.75 & 1 & 0.2 & 1.15 & 6.6125 \\
\hdashline
6.75 & 1 & 0.2 & 1.35 & 9.1125 \\
\hdashline
7 & 1 & 0.2 & 1.4 & 9.8 \\
\hdashline
Total & 5 & 1 & 6 & 36.575
\end{array} X ˉ 5 5.5 5.75 6.75 7 T o t a l f 1 1 1 1 1 5 f ( X ˉ ) 0.2 0.2 0.2 0.2 0.2 1 X ˉ f ( X ˉ ) 1 1.1 1.15 1.35 1.4 6 X ˉ 2 f ( X ˉ ) 5 6.05 6.6125 9.1125 9.8 36.575 E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 6 E(\bar{X})=\sum\bar{X}f(\bar{X})=6 E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 6 V a r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( E ( X ˉ ) ) 2 = 36.575 − 6 2 Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(E(\bar{X}))^2=36.575-6^2 Va r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( E ( X ˉ ) ) 2 = 36.575 − 6 2 = 0.575 =0.575 = 0.575 Verification:
μ = 6 = E ( X ˉ ) \mu=6=E(\bar{X}) μ = 6 = E ( X ˉ ) V a r ( X ˉ ) = σ 2 n ( N − n N − 1 ) = Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})= Va r ( X ˉ ) = n σ 2 ( N − 1 N − n ) = = 9.2 4 ( 5 − 4 5 − 1 ) = 0.575 =\dfrac{9.2}{4}(\dfrac{5-4}{5-1})=0.575 = 4 9.2 ( 5 − 1 5 − 4 ) = 0.575
Comments