Question #187514

random sample of size 4 from a finite population of 3,6,9


1
Expert's answer
2021-05-07T10:33:30-0400

a. the mean of the population



μ=2+3+7+8+105=6\mu=\dfrac{2+3+7+8+10}{5}=6

the standard deviation of the population



σ2=(26)2+(36)2+(76)2+(86)2+(106)25\sigma^2=\dfrac{(2-6)^2+(3-6)^2+(7-6)^2+(8-6)^2+(10-6)^2}{5}

=9.2=9.2

σ=9.2=3.033\sigma=\sqrt{9.2}=3.033


b. There are (54)\dbinom{5}{4} samples of size two which can be drawn without replacement: 



(54)=5!4!(54)!=5\dbinom{5}{4}=\dfrac{5!}{4!(5-4)!}=5Sample No.Sample valueSample mean Xˉ1(2,3,7,8)52(2,3,7,10)5.53(2,3,8,10)5.754(2,7,8,10)6.755(3,7,8,10)7\def\arraystretch{1.5} \begin{array}{c:c:c} Sample\ No. & Sample\ value & Sample\ mean\ \bar{X} \\ \hline 1 & (2,3,7,8) & 5 \\ \hdashline 2 & (2,3,7,10) & 5.5 \\ \hdashline 3 & (2,3,8,10) & 5.75 \\ \hdashline 4 & (2,7,8,10) & 6.75 \\ \hdashline 5 & (3,7,8,10) & 7 \end{array}

The sampling distribution of the sample mean Xˉ\bar{X} and its mean and standard deviation are:



Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)510.2155.510.21.16.055.7510.21.156.61256.7510.21.359.1125710.21.49.8Total51636.575\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 5 & 1 & 0.2 & 1 & 5 \\ \hdashline 5.5 & 1 & 0.2 & 1.1 & 6.05 \\ \hdashline 5.75 & 1 & 0.2 & 1.15 & 6.6125 \\ \hdashline 6.75 & 1 & 0.2 & 1.35 & 9.1125 \\ \hdashline 7 & 1 & 0.2 & 1.4 & 9.8 \\ \hdashline Total & 5 & 1 & 6 & 36.575 \end{array}E(Xˉ)=Xˉf(Xˉ)=6E(\bar{X})=\sum\bar{X}f(\bar{X})=6Var(Xˉ)=Xˉ2f(Xˉ)(E(Xˉ))2=36.57562Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(E(\bar{X}))^2=36.575-6^2=0.575=0.575

Verification:



μ=6=E(Xˉ)\mu=6=E(\bar{X})Var(Xˉ)=σ2n(NnN1)=Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})==9.24(5451)=0.575=\dfrac{9.2}{4}(\dfrac{5-4}{5-1})=0.575

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS