Question #187328

Given the function

π‘₯

3 βˆ’ 13π‘₯

2

+ 25π‘₯ + 25 = 0

(a) Show that the equation has a root in the interval (βˆ’ 2, 2).

(b) Use 2 iterations of Newton’s method to find an approximation for this root.

(c) Use 2 iterations of the bisection method to find an approximation for this

root.


1
Expert's answer
2021-05-07T10:25:02-0400

Given function is-


f(x)=x3βˆ’13x2+25x+25f(x)=x^3-13x^2+25x+25


Then fβ€²(x)=3x2βˆ’26x+25f'(x)=3x^2-26x+25


(a) f(βˆ’2)=(βˆ’2)3βˆ’13(βˆ’2)2+25(βˆ’2)+25=βˆ’8βˆ’52βˆ’50+25=βˆ’85f(-2)=(-2)^3-13(-2)^2+25(-2)+25=-8-52-50+25=-85

f(2)=(2)3βˆ’13(2)2+25(2)+25=8βˆ’52+50+25=31f(2)=(2)^3-13(2)^2+25(2)+25=8-52+50+25=31


As The value of f(-2)<0 and f(2)>0

So The root must lies in (-2,2)


(b) Let xo=βˆ’2,x_o=-2,

Then According to Newton's method-

xn+1=xnβˆ’f(xn)fβ€²(xn)x_{n+1}=x_n-\dfrac{f(x_n)}{f'(x_n)}

at n=0,

first Iteration-

x1=xoβˆ’f(x0)fβ€²(xo)=βˆ’2βˆ’(βˆ’2)3βˆ’13(βˆ’2)2+25(βˆ’2)+253(βˆ’2)2βˆ’2(βˆ’2)+25x_1=x_o-\dfrac{f(x_0)}{f'(x_o)}=-2-\dfrac{(-2)^3-13(-2)^2+25(-2)+25}{3(-2)^2-2(-2)+25}


βˆ’2βˆ’(βˆ’8589)=βˆ’2+0.96=βˆ’1.04-2-(-\dfrac{85}{89})=-2+0.96=-1.04

Second Iteration-

at n=1


x2=x1βˆ’f(x1)fβ€²(x1)=βˆ’1.04βˆ’[(βˆ’1.04)3βˆ’13(βˆ’1.04)2+25(βˆ’1.04)+253(βˆ’1.04)2βˆ’26(1.04)+25]x_2=x_1-\dfrac{f(x_1)}{f'(x_1)}=-1.04-[\dfrac{(-1.04)^3-13(-1.04)^2+25(-1.04)+25}{3(-1.04)^2-26(1.04)+25}]


=βˆ’1.04βˆ’(βˆ’13.9355.28)=βˆ’1.04+0.2519=βˆ’0.788=-1.04-(-\dfrac{13.93}{55.28})=-1.04+0.2519=-0.788


Hence Approximate root is βˆ’0.788.-0.788.


(c) As The root lies between -2 and 2

So By bisection Method-

First Iteration-

x1=βˆ’2+22=0x_1=\dfrac{-2+2}{2}=0


f(0)=(0)βˆ’13(0)+25(0)+25=25>0f(0)=(0)-13(0)+25(0)+25=25>0


So root lies in -2 and 0


So second Iteration-

x2=βˆ’2+xo2=βˆ’2+02=βˆ’1x_2=\dfrac{-2+x_o}{2}=\dfrac{-2+0}{2}=-1



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS