Given function is-
f(x)=x3β13x2+25x+25
Then fβ²(x)=3x2β26x+25
(a) f(β2)=(β2)3β13(β2)2+25(β2)+25=β8β52β50+25=β85
f(2)=(2)3β13(2)2+25(2)+25=8β52+50+25=31
As The value of f(-2)<0 and f(2)>0
So The root must lies in (-2,2)
(b) Let xoβ=β2,
Then According to Newton's method-
xn+1β=xnββfβ²(xnβ)f(xnβ)β
at n=0,
first Iteration-
x1β=xoββfβ²(xoβ)f(x0β)β=β2β3(β2)2β2(β2)+25(β2)3β13(β2)2+25(β2)+25β
β2β(β8985β)=β2+0.96=β1.04
Second Iteration-
at n=1
x2β=x1ββfβ²(x1β)f(x1β)β=β1.04β[3(β1.04)2β26(1.04)+25(β1.04)3β13(β1.04)2+25(β1.04)+25β]
=β1.04β(β55.2813.93β)=β1.04+0.2519=β0.788
Hence Approximate root is β0.788.
(c) As The root lies between -2 and 2
So By bisection Method-
First Iteration-
x1β=2β2+2β=0
f(0)=(0)β13(0)+25(0)+25=25>0
So root lies in -2 and 0
So second Iteration-
x2β=2β2+xoββ=2β2+0β=β1
Comments