Question #182193

Dhaka University took a test and the final grades have a mean of 100 and a standard deviation of 11. If we can approximate the distribution of these grades by a normal distribution, what percent of the students

a) scored higher than 120?

b) should pass the test (grades≥90)?

c) should fail the test (grades<90)?


1
Expert's answer
2021-05-02T16:01:50-0400

Denote

x=100\overline{x}=100

s=11s=11


a) P(X>120)=P(120<X<+)=P(X>120)=P(120<X<+\infty)=

F(+)F(120xs)=F(+\infty)-F\left(\dfrac{120-\overline{x}}{s}\right)=

1F(12010011)=1-F\left(\dfrac{120-100}{11}\right)= 1F(2011)1-F\left(\dfrac{20}{11}\right)\approx 1F(1.8182)10.96550.03451-F\left(1.8182\right)\approx1-0.9655\approx0.0345

Percent of the students scored higher than 120 is 0.0345×100=3.45%0.0345\times100=3.45\%


b) P(X90)=P(90X<+)=P(X\geq90)=P(90\leq X<+\infty)=

F(+)F(90xs)=F(+\infty)-F\left(\dfrac{90-\overline{x}}{s}\right)=

1F(9010011)=1-F\left(\dfrac{90-100}{11}\right)= 1F(1011)1-F\left(-\dfrac{10}{11}\right)\approx

1F(0.9091)10.18170.81831-F\left(-0.9091\right)\approx1-0.1817\approx0.8183

Percent of the students should pass the test is 0.8183×100=81.83%0.8183\times100=81.83\%


c) P(X<90)=P(<X<90)=P(X<90)=P(-\infty<X<90)=

F(90xs)F()=F\left(\dfrac{90-\overline{x}}{s}\right)-F(-\infty)=

F(9010011)0=F(1011)F\left(\dfrac{90-100}{11}\right)-0=F\left(-\dfrac{10}{11}\right)\approx F(0.9091)0.1817F(-0.9091)\approx0.1817

Percent of the students should fail the test is 0.1817×100=18.17%0.1817\times100=18.17\%


Note that b) and c) must satisfy 81.83%+18.17%=100%81.83\%+18.17\%=100\%



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS