Given mgf is-
f ( t ) = e 3 t f(t)=e^{3t} f ( t ) = e 3 t
First moment- Mean is given by
E ( X ) = ∫ 0 1 t e 3 t d t = t e 3 t 3 − ∫ 0 1 e 3 t 3 d t E(X)=\int_0^1te^{3t}dt=t\dfrac{e^{3t}}{3}-\int_0^1\dfrac{e^{3t}}{3}dt E ( X ) = ∫ 0 1 t e 3 t d t = t 3 e 3 t − ∫ 0 1 3 e 3 t d t
= 2 9 e 3 − 1 9 =\dfrac{2}{9}e^3-\dfrac{1}{9} = 9 2 e 3 − 9 1
Second moment -
E ( X 2 ) = ∫ 0 1 t 2 e 3 t d t = t 2 e 3 t 3 − ∫ 0 1 2 3 t e 3 t d t E(X^2)=\int_0^1t^2e^{3t}dt=t^2\dfrac{e^{3t}}{3}-\int_0^1\dfrac{2}{3}te^{3t}dt E ( X 2 ) = ∫ 0 1 t 2 e 3 t d t = t 2 3 e 3 t − ∫ 0 1 3 2 t e 3 t d t
= 5 27 e 3 + 2 27 =\dfrac{5}{27}e^3+\dfrac{2}{27} = 27 5 e 3 + 27 2
Standard deviation = E ( X 2 ) − [ E ( X ) ] 2 =\sqrt{E(X^2)-[E(X)]^2} = E ( X 2 ) − [ E ( X ) ] 2
= 5 27 e 3 + 2 27 − 4 81 e 6 − 1 81 + 4 81 e 3 =\sqrt{\dfrac{5}{27}e^3+\dfrac{2}{27}-\dfrac{4}{81}e^6-\dfrac{1}{81}+\dfrac{4}{81}e^3} = 27 5 e 3 + 27 2 − 81 4 e 6 − 81 1 + 81 4 e 3
= 19 81 e 3 − 4 81 e 6 + 5 81 =\sqrt{\dfrac{19}{81}e^3-\dfrac{4}{81}e^6+\dfrac{5}{81}} = 81 19 e 3 − 81 4 e 6 + 81 5
P(X<a) can be computed by integrating f(t) from 0 to a.
P ( X < a ) = ∫ 0 a e 3 t d t = e 3 t ∣ 0 a = e 3 a − 1 P(X<a)=\int_0^ae^{3t}dt=e^{3t}|_0^a=e^{3a}-1 P ( X < a ) = ∫ 0 a e 3 t d t = e 3 t ∣ 0 a = e 3 a − 1
Comments