Question #181926

) If the moment generating function (m.g.f.) of a random variable X is 

( ) exp 3( 32 ). 2 M t t t X = + Find mean and standard derivation of X and also compute 

P(x < )


1
Expert's answer
2021-04-25T15:43:52-0400

Given mgf is-

f(t)=e3tf(t)=e^{3t}


First moment- Mean is given by


E(X)=01te3tdt=te3t301e3t3dtE(X)=\int_0^1te^{3t}dt=t\dfrac{e^{3t}}{3}-\int_0^1\dfrac{e^{3t}}{3}dt


=29e319=\dfrac{2}{9}e^3-\dfrac{1}{9}

Second moment -

E(X2)=01t2e3tdt=t2e3t30123te3tdtE(X^2)=\int_0^1t^2e^{3t}dt=t^2\dfrac{e^{3t}}{3}-\int_0^1\dfrac{2}{3}te^{3t}dt

=527e3+227=\dfrac{5}{27}e^3+\dfrac{2}{27}


Standard deviation =E(X2)[E(X)]2=\sqrt{E(X^2)-[E(X)]^2}


=527e3+227481e6181+481e3=\sqrt{\dfrac{5}{27}e^3+\dfrac{2}{27}-\dfrac{4}{81}e^6-\dfrac{1}{81}+\dfrac{4}{81}e^3}


=1981e3481e6+581=\sqrt{\dfrac{19}{81}e^3-\dfrac{4}{81}e^6+\dfrac{5}{81}}



P(X<a) can be computed by integrating f(t) from 0 to a.

P(X<a)=0ae3tdt=e3t0a=e3a1P(X<a)=\int_0^ae^{3t}dt=e^{3t}|_0^a=e^{3a}-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS