) If the moment generating function (m.g.f.) of a random variable X is
( ) exp 3( 32 ). 2 M t t t X = + Find mean and standard derivation of X and also compute
P(x < )
Given mgf is-
"f(t)=e^{3t}"
First moment- Mean is given by
"E(X)=\\int_0^1te^{3t}dt=t\\dfrac{e^{3t}}{3}-\\int_0^1\\dfrac{e^{3t}}{3}dt"
"=\\dfrac{2}{9}e^3-\\dfrac{1}{9}"
Second moment -
"E(X^2)=\\int_0^1t^2e^{3t}dt=t^2\\dfrac{e^{3t}}{3}-\\int_0^1\\dfrac{2}{3}te^{3t}dt"
"=\\dfrac{5}{27}e^3+\\dfrac{2}{27}"
Standard deviation "=\\sqrt{E(X^2)-[E(X)]^2}"
"=\\sqrt{\\dfrac{5}{27}e^3+\\dfrac{2}{27}-\\dfrac{4}{81}e^6-\\dfrac{1}{81}+\\dfrac{4}{81}e^3}"
"=\\sqrt{\\dfrac{19}{81}e^3-\\dfrac{4}{81}e^6+\\dfrac{5}{81}}"
P(X<a) can be computed by integrating f(t) from 0 to a.
"P(X<a)=\\int_0^ae^{3t}dt=e^{3t}|_0^a=e^{3a}-1"
Comments
Leave a comment