Question #181319

Answer the question below


In a math test, the mean score is 45 and the standard deviation is 4. Assuming normality, what is the probability that the score will lie: 

If the score is above 58

If the score is below 49

If the score is below 68

If the score is above 55

If the score is above 38


1
Expert's answer
2021-04-15T06:51:20-0400

μ=45σ=4P(X>58)=1P(X<58)=1P(Z<58454)=1P(Z<3.25)=10.9994=0.0006P(X<49)=P(Z<49454)=P(Z<1)=0.8413P(X<68)=P(Z<68454)=P(Z<5.75)=0.9999P(X>55)=1P(X<55)=1P(Z<55454)=1P(Z<2.5)=10.9937=0.0063P(X>38)=1P(X<38)=1P(Z<38454)=1P(Z<1.75)=10.04006=0.95994\mu = 45 \\ \sigma = 4 \\ P(X>58) = 1 -P(X<58) \\ = 1 -P(Z< \frac{58-45}{4}) \\ = 1 -P(Z<3.25) \\ = 1 -0.9994 \\ = 0.0006 \\ P(X<49) = P(Z< \frac{49-45}{4}) \\ = P(Z< 1) \\ = 0.8413 \\ P(X<68) = P(Z< \frac{68-45}{4}) \\ = P(Z< 5.75) \\ = 0.9999 \\ P(X>55) = 1 -P(X<55) \\ = 1 -P(Z< \frac{55-45}{4}) \\ = 1 -P(Z<2.5) \\ = 1 -0.9937 \\ = 0.0063 \\ P(X>38) = 1 -P(X<38) \\ = 1 -P(Z< \frac{38-45}{4}) \\ = 1 -P(Z< -1.75) \\ = 1 -0.04006 \\ = 0.95994


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS