Question #181194

Consider a population with values (2,5,7,8)

a. Find the population mean.

b. Find the population variance.

c. Find the population standard deviation.

d. Find the possible samples of size 2 that can be drawn with replacement from this population.


1
Expert's answer
2021-04-15T06:30:25-0400

a. Mean


μ=2+5+7+84=5.5\mu=\dfrac{2+5+7+8}{4}=5.5

b. Variance


σ2=14((25.5)2+(55.5)2+(75.5)2\sigma^2=\dfrac{1}{4}\big((2-5.5)^2+(5-5.5)^2+(7-5.5)^2

+(85.5)2)=214=5.25+(8-5.5)^2\big)=\dfrac{21}{4}=5.25


c. Standard deviation


σ=σ2=214=2122.2913\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{21}{4}}=\dfrac{\sqrt{21}}{2}\approx2.2913



d. We have population values 2,5,7,8,2,5,7,8, population size N=4N=4 and sample size n=2.n=2. Thus, the number of possible samples which can be drawn without replacement is


(Nn)=(42)=6\dbinom{N}{n}=\dbinom{4}{2}=6SampleSampleSample meanNo.values(Xˉ)12,53.522,74.532,8545,7655,86.567,87.5\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & Sample & Sample \ mean \\ No. & values & (\bar{X}) \\ \hline 1 & 2,5 & 3.5 \\ \hdashline 2 & 2,7 & 4.5 \\ \hdashline 3 & 2,8 & 5 \\ \hdashline 4 & 5,7 & 6 \\ \hdashline 5 & 5,8 & 6.5 \\ \hdashline 6 & 7,8 & 7.5 \\ \hline \end{array}

The sampling distribution of the sample means.


Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)7/211/67/1249/249/211/69/1281/24511/610/12100/24611/612/12144/2413/211/613/12169/2415/211/615/12225/24Total6166/12768/24\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 7/2 & 1& 1/6 & 7/12 & 49/24 \\ \hdashline 9/2 & 1 & 1/6 & 9/12 & 81/24 \\ \hdashline 5 & 1 & 1/6 & 10/12 & 100/24 \\ \hdashline 6 & 1 & 1/6 & 12/12 & 144/24 \\ \hdashline 13/2 & 1& 1/6 & 13/12 & 169/24 \\ \hdashline 15/2 & 1 & 1/6 & 15/12 & 225/24 \\ \hdashline Total & 6 & 1 & 66/12 & 768/24 \\ \hline \end{array}



E(Xˉ)=Xˉf(Xˉ)=6612=5.5E(\bar{X})=\sum\bar{X}f(\bar{X})=\dfrac{66}{12}=5.5

The mean of the sampling distribution of the sample means is equal to the

the mean of the population.


E(Xˉ)=5.5=μE(\bar{X})=5.5=\mu


Var(Xˉ)=Xˉ2f(Xˉ)(Xˉf(Xˉ))2Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2

=76824(6612)2=4224=74=1.75=\dfrac{768}{24}-(\dfrac{66}{12})^2=\dfrac{42}{24}=\dfrac{7}{4}=1.75

Var(Xˉ)=74=721.3229\sqrt{Var(\bar{X})}=\sqrt{\dfrac{7}{4}}=\dfrac{\sqrt{7}}{2}\approx1.3229

Verification:

Var(Xˉ)=σ2n(NnN1)=2142(4241)Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{\dfrac{21}{4}}{2}(\dfrac{4-2}{4-1})

=74=1.75,True=\dfrac{7}{4}=1.75, True


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS