a. Mean
μ = 2 + 5 + 7 + 8 4 = 5.5 \mu=\dfrac{2+5+7+8}{4}=5.5 μ = 4 2 + 5 + 7 + 8 = 5.5 b. Variance
σ 2 = 1 4 ( ( 2 − 5.5 ) 2 + ( 5 − 5.5 ) 2 + ( 7 − 5.5 ) 2 \sigma^2=\dfrac{1}{4}\big((2-5.5)^2+(5-5.5)^2+(7-5.5)^2 σ 2 = 4 1 ( ( 2 − 5.5 ) 2 + ( 5 − 5.5 ) 2 + ( 7 − 5.5 ) 2
+ ( 8 − 5.5 ) 2 ) = 21 4 = 5.25 +(8-5.5)^2\big)=\dfrac{21}{4}=5.25 + ( 8 − 5.5 ) 2 ) = 4 21 = 5.25
c. Standard deviation
σ = σ 2 = 21 4 = 21 2 ≈ 2.2913 \sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{21}{4}}=\dfrac{\sqrt{21}}{2}\approx2.2913 σ = σ 2 = 4 21 = 2 21 ≈ 2.2913
d. We have population values 2 , 5 , 7 , 8 , 2,5,7,8, 2 , 5 , 7 , 8 , population size N = 4 N=4 N = 4 and sample size n = 2. n=2. n = 2. Thus, the number of possible samples which can be drawn without replacement is
( N n ) = ( 4 2 ) = 6 \dbinom{N}{n}=\dbinom{4}{2}=6 ( n N ) = ( 2 4 ) = 6 S a m p l e S a m p l e S a m p l e m e a n N o . v a l u e s ( X ˉ ) 1 2 , 5 3.5 2 2 , 7 4.5 3 2 , 8 5 4 5 , 7 6 5 5 , 8 6.5 6 7 , 8 7.5 \def\arraystretch{1.5}
\begin{array}{c:c:c}
Sample & Sample & Sample \ mean \\
No. & values & (\bar{X}) \\ \hline
1 & 2,5 & 3.5 \\
\hdashline
2 & 2,7 & 4.5 \\
\hdashline
3 & 2,8 & 5 \\
\hdashline
4 & 5,7 & 6 \\
\hdashline
5 & 5,8 & 6.5 \\
\hdashline
6 & 7,8 & 7.5 \\
\hline
\end{array} S am pl e N o . 1 2 3 4 5 6 S am pl e v a l u es 2 , 5 2 , 7 2 , 8 5 , 7 5 , 8 7 , 8 S am pl e m e an ( X ˉ ) 3.5 4.5 5 6 6.5 7.5
The sampling distribution of the sample means.
X ˉ f f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 7 / 2 1 1 / 6 7 / 12 49 / 24 9 / 2 1 1 / 6 9 / 12 81 / 24 5 1 1 / 6 10 / 12 100 / 24 6 1 1 / 6 12 / 12 144 / 24 13 / 2 1 1 / 6 13 / 12 169 / 24 15 / 2 1 1 / 6 15 / 12 225 / 24 T o t a l 6 1 66 / 12 768 / 24 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline
7/2 & 1& 1/6 & 7/12 & 49/24 \\
\hdashline
9/2 & 1 & 1/6 & 9/12 & 81/24 \\
\hdashline
5 & 1 & 1/6 & 10/12 & 100/24 \\
\hdashline
6 & 1 & 1/6 & 12/12 & 144/24 \\
\hdashline
13/2 & 1& 1/6 & 13/12 & 169/24 \\
\hdashline
15/2 & 1 & 1/6 & 15/12 & 225/24 \\
\hdashline
Total & 6 & 1 & 66/12 & 768/24 \\ \hline
\end{array} X ˉ 7/2 9/2 5 6 13/2 15/2 T o t a l f 1 1 1 1 1 1 6 f ( X ˉ ) 1/6 1/6 1/6 1/6 1/6 1/6 1 X ˉ f ( X ˉ ) 7/12 9/12 10/12 12/12 13/12 15/12 66/12 X ˉ 2 f ( X ˉ ) 49/24 81/24 100/24 144/24 169/24 225/24 768/24
E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 66 12 = 5.5 E(\bar{X})=\sum\bar{X}f(\bar{X})=\dfrac{66}{12}=5.5 E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 12 66 = 5.5 The mean of the sampling distribution of the sample means is equal to the
the mean of the population.
E ( X ˉ ) = 5.5 = μ E(\bar{X})=5.5=\mu E ( X ˉ ) = 5.5 = μ
V a r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2 Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2 Va r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2
= 768 24 − ( 66 12 ) 2 = 42 24 = 7 4 = 1.75 =\dfrac{768}{24}-(\dfrac{66}{12})^2=\dfrac{42}{24}=\dfrac{7}{4}=1.75 = 24 768 − ( 12 66 ) 2 = 24 42 = 4 7 = 1.75
V a r ( X ˉ ) = 7 4 = 7 2 ≈ 1.3229 \sqrt{Var(\bar{X})}=\sqrt{\dfrac{7}{4}}=\dfrac{\sqrt{7}}{2}\approx1.3229 Va r ( X ˉ ) = 4 7 = 2 7 ≈ 1.3229
Verification:
V a r ( X ˉ ) = σ 2 n ( N − n N − 1 ) = 21 4 2 ( 4 − 2 4 − 1 ) Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{\dfrac{21}{4}}{2}(\dfrac{4-2}{4-1}) Va r ( X ˉ ) = n σ 2 ( N − 1 N − n ) = 2 4 21 ( 4 − 1 4 − 2 )
= 7 4 = 1.75 , T r u e =\dfrac{7}{4}=1.75, True = 4 7 = 1.75 , T r u e
Comments