The median and the mode of the following distribution are known to be 27 and 26 respectively.
Class 0-10 10-20 20-30 30-40 40-50
Frequency 3 a 20 12 b
(i) Determine the values of a and b. (5 Marks)
(ii) Compute the arithmetic mean and the standard deviation of the distribution.
(i) Given median = 27 and mode = 26
So, N= 3 + a+ 20 + 12 + b
= 35 + a + b
Therefore Mode lies in the 20 – 30 class and its frequency will be 20
So, Mode = L +"\\dfrac{(f_m-f_1)h}{(f_m-f_1)(f_m-f_2)}"
"26= 20+ \\dfrac{(20-a)10}{(20-a)+(20-12)}"
"6=\\dfrac{200-10a}{28-a}"
200 – 10 a = 168 – 6a
Or 4a = 200 – 168
Or a = 8
Now Median = "l + (\\dfrac{\\frac{N}{2}-c.f.}{f})h"
Now class interval for median = 20 – 30, so l = 20
So, "\\dfrac{N}{2}= \\dfrac{(35+a+b)}{2}"
c.f.= F = 3 + a=11
f = 20 and h = 10
Now,
Median = "l + (\\dfrac{\\frac{N}{2}-c.f.}{f})h"
"27 = 20 +\\dfrac{ (\\dfrac{35+a+b}{2}-11)10}{20}"
"14 = \\dfrac{43+b}{2}-11\\\\43+b=50\\\\\\Rightarrow b=7"
(ii)
Mean "\\bar x =A + \\dfrac{\\sum fd}{n}\\times h"
=25+1250⋅10
=25+0.24⋅10
=25+2.4
Mean =27.4
Standard deviation "S=\\sqrt{\\dfrac{\\sum f\\times d^2-\\frac{(\\sum fd)^2}{n}}{n-1}}\\times h"
S= "\\sqrt{\\dfrac{60-\\frac{(12)^2}{50}}{49}}\u22c510"
S =10.7968
Standard Deviation = 10.7968
Comments
Leave a comment