Question #180141

The median and the mode of the following distribution are known to be 27 and 26 respectively.

Class 0-10 10-20 20-30 30-40 40-50

Frequency 3 a 20 12 b

(i) Determine the values of a and b.                              (5 Marks)


(ii) Compute the arithmetic mean and the standard deviation of the distribution.



1
Expert's answer
2021-05-03T05:50:44-0400

(i) Given median = 27 and mode = 26

So, N= 3 + a+ 20 + 12 + b

= 35 + a + b


Therefore Mode lies in the 20 – 30 class and its frequency will be 20

So, Mode = L +(fmf1)h(fmf1)(fmf2)\dfrac{(f_m-f_1)h}{(f_m-f_1)(f_m-f_2)}

   

26=20+(20a)10(20a)+(2012)26= 20+ \dfrac{(20-a)10}{(20-a)+(20-12)}


      6=20010a28a6=\dfrac{200-10a}{28-a}


     200 – 10 a = 168 – 6a

      Or 4a = 200 – 168

      Or a = 8


Now Median = l+(N2c.f.f)hl + (\dfrac{\frac{N}{2}-c.f.}{f})h


Now class interval for median = 20 – 30, so l = 20

So, N2=(35+a+b)2\dfrac{N}{2}= \dfrac{(35+a+b)}{2}


  c.f.= F = 3 + a=11

 f = 20 and h = 10

Now,

Median = l+(N2c.f.f)hl + (\dfrac{\frac{N}{2}-c.f.}{f})h

27=20+(35+a+b211)102027 = 20 +\dfrac{ (\dfrac{35+a+b}{2}-11)10}{20}


14=43+b21143+b=50b=714 = \dfrac{43+b}{2}-11\\43+b=50\\\Rightarrow b=7


(ii)




Mean xˉ=A+fdn×h\bar x =A + \dfrac{\sum fd}{n}\times h


=25+1250⋅10


=25+0.24⋅10


=25+2.4


Mean =27.4


Standard deviation S=f×d2(fd)2nn1×hS=\sqrt{\dfrac{\sum f\times d^2-\frac{(\sum fd)^2}{n}}{n-1}}\times h


S= 60(12)2504910\sqrt{\dfrac{60-\frac{(12)^2}{50}}{49}}⋅10

S =10.7968


Standard Deviation = 10.7968

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS