Question #178371

The time taken (in minutes) by all students in a class to complete a test follows a normal distribution of 57 with variance of 34. a) A student is randomly chosen from the class.


Find the probability that


i) he/she takes more than 52 minutes to complete the test. (4 marks)


ii) he/she takes between 41 to 76 minutes to complete the test. (4 marks)


b) 5 students are chosen from the class at random, find the probability that at most 3 of them takes less than 61 minutes to complete the test. (7 marks)


c) 12 students are chosen from the class at random, find the probability at all of them takes between 43 to 64 minutes to complete the test. (5 marks) 


1
Expert's answer
2021-04-15T07:33:47-0400

Solution:

Let X be the random variable denoting the time taken (in minutes) by all students in a class to complete a test.

XN(μ,σ2)X\sim N(\mu,\sigma^2)

with μ=57,σ2=34\mu=57,\sigma^2=34

(a) (i):

z=Xμσz=\dfrac{X-\mu}{\sigma}

Now, P(X>52)=P(z>525734)=P(z>0.86)P(X>52)=P(z>\dfrac{52-57}{\sqrt{34}})=P(z>-0.86)

=1P(z0.86)=10.19489=0.80511=1-P(z\le-0.86)=1-0.19489=0.80511

(ii):P(41<X<76)=P(X<76)P(X<41)P(41<X<76)=P(X<76)-P(X<41)

=P(z<765734)P(z<415734)=P(z<\dfrac{76-57}{\sqrt{34}})-P(z<\dfrac{41-57}{\sqrt{34}})

=P(z<3.26)P(z<2.74)=0.999440.00307=0.99637=P(z<3.26)-P(z<-2.74) \\=0.99944-0.00307 \\=0.99637

(b):

P(X<61)=P(z<615734)=P(z<0.69)=0.75490P(X<61)=P(z<\dfrac{61-57}{\sqrt{34}})=P(z<0.69)=0.75490

Now, assume a random variable YBin(n,p)Y\sim Bin(n,p)

Here, n=5,p=0.7549,q=0.2451n=5,p=0.7549,q=0.2451

Then, P(Y3)=1P(Y>3)=1[P(Y=4)+P(Y=5)]P(Y\le3)=1-P(Y>3)=1-[P(Y=4)+P(Y=5)]

=1[5C4(0.7549)4(0.2451)1+5C5(0.7549)5(0.2451)0]=1[5(0.7549)4(0.2451)+(0.7549)5]=0.6431=1-[^5C_4(0.7549)^4(0.2451)^1+^5C_5(0.7549)^5(0.2451)^0] \\=1-[5(0.7549)^4(0.2451)+(0.7549)^5] \\=0.6431

(c):

P(43<X<64)=P(X<64)P(X<43)P(43<X<64)=P(X<64)-P(X<43)

=P(z<645734)P(z<435734)=P(z<1.2)P(z<2.4)=0.884930.0082=0.87673=P(z<\dfrac{64-57}{\sqrt{34}})-P(z<\dfrac{43-57}{\sqrt{34}}) \\=P(z<1.2)-P(z<-2.4) \\=0.88493-0.0082 \\=0.87673

Now, assume a random variable RBin(n,p)R\sim Bin(n,p)

Here n=12,p=0.87676,q=0.12327n=12,p=0.87676,q=0.12327

Then, P(R=12)=12C12(0.87676)12(0.12327)1=0.2063P(R=12)=^{12}C_{12}(0.87676)^{12}(0.12327)^1=0.2063


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS