Assume the population is normally distributed with:
Xbar = 96.44 S =10.2 n=15 t=1.76
Construct a 90% confidence interval estimate for the population mean, μ
"c = 0.90 \\\\\n\nn = 15 \\\\\n\n\\bar{x} = 96.44 \\\\\n\nt_{\u03b1\/2}= 1.76"
The margin of error is:
"E = t_{\u03b1\/2} \\times \\frac{S}{\\sqrt{n}} = 1.76 \\times \\frac{10.2}{\\sqrt{15}} = 4.63"
The confidence interval:
"\\bar{x} -E < \u03bc < \\bar{x} +E \\\\\n\n96.44 -4.63 < \u03bc < 96.44 +4.63 \\\\\n\n91.81 < \u03bc < 101.07"
Comments
Leave a comment