Question #178241

Assume the population is normally distributed with: 

Xbar = 96.44           S =10.2        n=15                 t=1.76

Construct a​ 90% confidence interval estimate for the population​ mean, μ


1
Expert's answer
2021-04-15T07:40:52-0400

c=0.90n=15xˉ=96.44tα/2=1.76c = 0.90 \\ n = 15 \\ \bar{x} = 96.44 \\ t_{α/2}= 1.76

The margin of error is:

E=tα/2×Sn=1.76×10.215=4.63E = t_{α/2} \times \frac{S}{\sqrt{n}} = 1.76 \times \frac{10.2}{\sqrt{15}} = 4.63

The confidence interval:

xˉE<μ<xˉ+E96.444.63<μ<96.44+4.6391.81<μ<101.07\bar{x} -E < μ < \bar{x} +E \\ 96.44 -4.63 < μ < 96.44 +4.63 \\ 91.81 < μ < 101.07


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS