Assume the population is normally distributed with:
Xbar = 96.44 S =10.2 n=15 t=1.76
Construct a 90% confidence interval estimate for the population mean, μ
c=0.90n=15xˉ=96.44tα/2=1.76c = 0.90 \\ n = 15 \\ \bar{x} = 96.44 \\ t_{α/2}= 1.76c=0.90n=15xˉ=96.44tα/2=1.76
The margin of error is:
E=tα/2×Sn=1.76×10.215=4.63E = t_{α/2} \times \frac{S}{\sqrt{n}} = 1.76 \times \frac{10.2}{\sqrt{15}} = 4.63E=tα/2×nS=1.76×1510.2=4.63
The confidence interval:
xˉ−E<μ<xˉ+E96.44−4.63<μ<96.44+4.6391.81<μ<101.07\bar{x} -E < μ < \bar{x} +E \\ 96.44 -4.63 < μ < 96.44 +4.63 \\ 91.81 < μ < 101.07xˉ−E<μ<xˉ+E96.44−4.63<μ<96.44+4.6391.81<μ<101.07
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments