Question #176727

Suppose that a continuous random variable 𝑋 has a probability density function

given by

𝑓(𝑥) = {

0 if 𝑥 ≤ 0

2𝑥

𝑅2

if 0 < 𝑥 ≤ 𝑅

0 if 𝑥 > 𝑅

Find the variance of 𝑋.


1
Expert's answer
2021-03-31T07:16:37-0400

Let's find the mathematical expectation:

M(X)=+xf(x)dx=0Rx2xR2dx=2x33R20R=2R33R2=23RM(X) = \int\limits_{ - \infty }^{ + \infty } {xf(x)dx} = \int\limits_0^R {x \cdot \frac{{2x}}{{{R^2}}}} dx = \left. {\frac{{2{x^3}}}{{3{R^2}}}} \right|_0^R = \frac{{2{R^3}}}{{3{R^2}}} = \frac{2}{3}R

Then the variance is

D(X)=+x2f(x)dxM2(X)=0Rx22xR2dx(23R)2=2x44R20R49R2=R2249R2=118D(X) = \int\limits_{ - \infty }^{ + \infty } {{x^2}f(x)dx} - {M^2}(X) = \int\limits_0^R {{x^2} \cdot \frac{{2x}}{{{R^2}}}} dx - {\left( {\frac{2}{3}R} \right)^2} = \left. {\frac{{2{x^4}}}{{4{R^2}}}} \right|_0^R - \frac{4}{9}{R^2} = \frac{{{R^2}}}{2} - \frac{4}{9}{R^2} = \frac{1}{{18}}

Answer: D(X)=118D(X) = \frac{1}{{18}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS