Suppose that a continuous random variable 𝑋 has a probability density function
given by
𝑓(𝑥) = {
0 if 𝑥 ≤ 0
2𝑥
𝑅2
if 0 < 𝑥 ≤ 𝑅
0 if 𝑥 > 𝑅
Find the variance of 𝑋.
Let's find the mathematical expectation:
M(X)=∫−∞+∞xf(x)dx=∫0Rx⋅2xR2dx=2x33R2∣0R=2R33R2=23RM(X) = \int\limits_{ - \infty }^{ + \infty } {xf(x)dx} = \int\limits_0^R {x \cdot \frac{{2x}}{{{R^2}}}} dx = \left. {\frac{{2{x^3}}}{{3{R^2}}}} \right|_0^R = \frac{{2{R^3}}}{{3{R^2}}} = \frac{2}{3}RM(X)=−∞∫+∞xf(x)dx=0∫Rx⋅R22xdx=3R22x3∣∣0R=3R22R3=32R
Then the variance is
D(X)=∫−∞+∞x2f(x)dx−M2(X)=∫0Rx2⋅2xR2dx−(23R)2=2x44R2∣0R−49R2=R22−49R2=118D(X) = \int\limits_{ - \infty }^{ + \infty } {{x^2}f(x)dx} - {M^2}(X) = \int\limits_0^R {{x^2} \cdot \frac{{2x}}{{{R^2}}}} dx - {\left( {\frac{2}{3}R} \right)^2} = \left. {\frac{{2{x^4}}}{{4{R^2}}}} \right|_0^R - \frac{4}{9}{R^2} = \frac{{{R^2}}}{2} - \frac{4}{9}{R^2} = \frac{1}{{18}}D(X)=−∞∫+∞x2f(x)dx−M2(X)=0∫Rx2⋅R22xdx−(32R)2=4R22x4∣∣0R−94R2=2R2−94R2=181
Answer: D(X)=118D(X) = \frac{1}{{18}}D(X)=181
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments