Suppose p = P ( A ) , q = P ( B ) , r = P ( AU B ) , what are the probability P ( A - B ) ?
P(A∪B)=P(A)+P(B)−P(A∩B)P(A \cup B)=P(A) + P(B) - P(A \cap B)P(A∪B)=P(A)+P(B)−P(A∩B)
P(A∩B)=P(A)+P(B)−P(A∪B)=p+q−rP(A \cap B)=P(A)+P(B)-P(A\cup B)=p+q-rP(A∩B)=P(A)+P(B)−P(A∪B)=p+q−r
P(A−B)=P(A)−P(A∩B)=p−p−q+r=r−qP(A-B)= P(A)-P(A\cap B)=p-p-q+r=r-qP(A−B)=P(A)−P(A∩B)=p−p−q+r=r−q
Answer: P(A-B)=r-q
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments