Question #175188


The mean weight of 500 college students is 70 kg and the standard deviation is 5 kg

Assuming that the weight is normally distributed, determine how many students weights:

a: Between 60 kg and 75 kg

b. More Than 90 kg

c. less than 65 kg



1
Expert's answer
2021-03-29T01:44:21-0400

By condition, a=70σ=5a = 70\,\,\sigma = 5

a: Between 60 kg and 75 kg

Find the probability that the student's weight will be between 60 and 75 kg:

P(60<x<75)=Φ(βaσ)Φ(αaσ)=Φ(75705)Φ(60705)=Φ(1)+Φ(2)=0,3413+0,4772=0,8185P(60 < x < 75) = \Phi \left( {\frac{{\beta - a}}{\sigma }} \right) - \Phi \left( {\frac{{\alpha - a}}{\sigma }} \right) = \Phi \left( {\frac{{75 - 70}}{5}} \right) - \Phi \left( {\frac{{60 - 70}}{5}} \right) = \Phi \left( 1 \right) + \Phi \left( 2 \right) = 0,3413 + 0,4772 = {\rm{0}}{\rm{,8185}}

Then quantity of students weights between 60 kg and 75 kg is

5000,8185409{\rm{500}} \cdot {\rm{0}}{\rm{,8185}} \approx {\rm{409}}

Answer: 409

b. More Than 90 kg

P(x>90)=Φ()Φ(90705)=Φ()Φ(4)0,50,50P(x > 90) = \Phi \left( \infty \right) - \Phi \left( {\frac{{90 - 70}}{5}} \right) = \Phi \left( \infty \right) - \Phi \left( 4 \right)\approx 0,5 - 0,5 \approx 0

Then quantity of students weights more then 90 kg is 0.

Answer: 0

c. less than 65 kg

P(x<65)=P(0<x<65)=Φ(65705)Φ(0705)=Φ(14)Φ(1)=0,50,3413=0,1587P(x < 65) = P(0 < x < 65) = \Phi \left( {\frac{{65 - 70}}{5}} \right) - \Phi \left( {\frac{{0 - 70}}{5}} \right) = \Phi \left( {14} \right) - \Phi \left( 1 \right) = 0,5 - 0,3413= {\rm{0}}{\rm{,1587}}

Then quantity of students weights less then 65 kg is 5000,158779{\rm{500}} \cdot {\rm{0}}{\rm{,1587}} \approx 79

Answer: 79


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS